BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 18179617)

  • 21. Inhibitory effect of Platycodi Radix on ovalbumin-induced airway inflammation in a murine model of asthma.
    Choi JH; Hwang YP; Lee HS; Jeong HG
    Food Chem Toxicol; 2009 Jun; 47(6):1272-9. PubMed ID: 19264106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BCG priming of dendritic cells enhances T regulatory and Th1 function and suppresses allergen-induced Th2 function in vitro and in vivo.
    Ahrens B; Gruber C; Rha RD; Freund T; Quarcoo D; Awagyan A; Hutloff A; Dittrich AM; Wahn U; Hamelmann E
    Int Arch Allergy Immunol; 2009; 150(3):210-20. PubMed ID: 19494518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential Mechanisms of T Cell-Mediated and Eosinophil-Independent Bronchial Hyperresponsiveness.
    Saeki M; Nishimura T; Kitamura N; Hiroi T; Mori A; Kaminuma O
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31216735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Th2 cells as targets for therapeutic intervention in allergic bronchial asthma.
    Wegmann M
    Expert Rev Mol Diagn; 2009 Jan; 9(1):85-100. PubMed ID: 19099351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The pathophysiology of asthma.
    Maddox L; Schwartz DA
    Annu Rev Med; 2002; 53():477-98. PubMed ID: 11818486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Esculetin restores mitochondrial dysfunction and reduces allergic asthma features in experimental murine model.
    Mabalirajan U; Dinda AK; Sharma SK; Ghosh B
    J Immunol; 2009 Aug; 183(3):2059-67. PubMed ID: 19570833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathogenesis of steroid-resistant airway hyperresponsiveness: interaction between IFN-gamma and TLR4/MyD88 pathways.
    Yang M; Kumar RK; Foster PS
    J Immunol; 2009 Apr; 182(8):5107-15. PubMed ID: 19342691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resolvin E1 dampens airway inflammation and hyperresponsiveness in a murine model of asthma.
    Aoki H; Hisada T; Ishizuka T; Utsugi M; Kawata T; Shimizu Y; Okajima F; Dobashi K; Mori M
    Biochem Biophys Res Commun; 2008 Mar; 367(2):509-15. PubMed ID: 18190790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New concepts in the pathogenesis and treatment of allergic asthma.
    Grayson MH; Bochner BS
    Mt Sinai J Med; 1998 Sep; 65(4):246-56. PubMed ID: 9757744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targets for asthma therapy.
    Boushey H
    Allerg Immunol (Paris); 2000 Nov; 32(9):336-41. PubMed ID: 11195856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The development of respiratory inflammation in children.
    Prescott SL
    Paediatr Respir Rev; 2006 Jun; 7(2):89-96. PubMed ID: 16765293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of neuro-immune cross-talk in the regulation of inflammation and remodelling in asthma.
    Veres TZ; Rochlitzer S; Braun A
    Pharmacol Ther; 2009 May; 122(2):203-14. PubMed ID: 19292991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asthma therapy: how far have we come, why did we fail and where should we go next?
    Janssen LJ
    Eur Respir J; 2009 Jan; 33(1):11-20. PubMed ID: 19118224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model.
    Kim SH; Lee YC
    J Pharm Pharmacol; 2009 Mar; 61(3):353-9. PubMed ID: 19222908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defective apoptotic cell clearance in asthma and COPD--a new drug target for statins?
    Walsh GM
    Trends Pharmacol Sci; 2008 Jan; 29(1):6-11. PubMed ID: 18054798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subclinical phenotypes of asthma.
    Bradding P; Green RH
    Curr Opin Allergy Clin Immunol; 2010 Feb; 10(1):54-9. PubMed ID: 19907311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Th2 cell differentiation and allergen-induced airway inflammation in Zfp35-deficient mice.
    Kitajima M; Iwamura C; Miki-Hosokawa T; Shinoda K; Endo Y; Watanabe Y; Shinnakasu R; Hosokawa H; Hashimoto K; Motohashi S; Koseki H; Ohara O; Yamashita M; Nakayama T
    J Immunol; 2009 Oct; 183(8):5388-96. PubMed ID: 19783676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Molecular mechanisms of allergic airway inflammation in asthma].
    Iwamoto I
    Nihon Kokyuki Gakkai Zasshi; 2003 Sep; 41(9):600-5. PubMed ID: 14531292
    [No Abstract]   [Full Text] [Related]  

  • 39. Pathophysiology of bronchial inflammation: chemoreceptors as therapeutic targets.
    Marshall GD
    Allergy Asthma Proc; 2000; 21(5):309-13. PubMed ID: 11061042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulatory T cells and asthma.
    Robinson DS
    Clin Exp Allergy; 2009 Sep; 39(9):1314-23. PubMed ID: 19538496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.