BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18179870)

  • 21. The role of clay minerals in the reduction of nitrate in groundwater by zero-valent iron.
    Cho DW; Chon CM; Jeon BH; Kim Y; Khan MA; Song H
    Chemosphere; 2010 Oct; 81(5):611-6. PubMed ID: 20797759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of low pH on nitrate reduction by iron powder.
    Huang YH; Zhang TC
    Water Res; 2004 Jun; 38(11):2631-42. PubMed ID: 15207593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced reduction of nitrate by supported nanoscale zero-valent iron prepared in ethanol-water solution.
    Park H; Park YM; Oh SK; You KM; Lee SH
    Environ Technol; 2009 Mar; 30(3):261-7. PubMed ID: 19438058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-level arsenite removal from groundwater by zero-valent iron.
    Lien HL; Wilkin RT
    Chemosphere; 2005 Apr; 59(3):377-86. PubMed ID: 15763090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of common ions on nitrate removal by zero-valent iron from alkaline soil.
    Tang C; Zhang Z; Sun X
    J Hazard Mater; 2012 Sep; 231-232():114-9. PubMed ID: 22795587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenate removal by zero valent iron: batch and column tests.
    Biterna M; Arditsoglou A; Tsikouras E; Voutsa D
    J Hazard Mater; 2007 Nov; 149(3):548-52. PubMed ID: 17689184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of granular ferric hydroxide amendment on the reduction of nitrate in groundwater by zero-valent iron.
    Song H; Jeon BH; Chon CM; Kim Y; Nam IH; Schwartz FW; Cho DW
    Chemosphere; 2013 Nov; 93(11):2767-73. PubMed ID: 24125714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrate and ammonium ions removal from groundwater by a hybrid system of zero-valent iron combined with adsorbents.
    Ji MK; Park WB; Khan MA; Abou-Shanab RA; Kim Y; Cho Y; Choi J; Song H; Jeon BH
    J Environ Monit; 2012 Apr; 14(4):1153-8. PubMed ID: 22344042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of zero-valent iron (Fe0) and temperature on the transformation of DDT and its metabolites in lake sediment.
    Eggen T; Majcherczyk A
    Chemosphere; 2006 Feb; 62(7):1116-25. PubMed ID: 16087216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decreasing ammonium generation using hydrogenotrophic bacteria in the process of nitrate reduction by nanoscale zero-valent iron.
    An Y; Li T; Jin Z; Dong M; Li Q; Wang S
    Sci Total Environ; 2009 Oct; 407(21):5465-70. PubMed ID: 19665759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate.
    Krajangpan S; Bermudez JJ; Bezbaruah AN; Chisholm BJ; Khan E
    Water Sci Technol; 2008; 58(11):2215-22. PubMed ID: 19092199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate.
    Liou YH; Lo SL; Kuan WH; Lin CJ; Weng SC
    Water Res; 2006 Jul; 40(13):2485-92. PubMed ID: 16814362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial reduction of perchlorate with zero-valent iron.
    Son A; Lee J; Chiu PC; Kim BJ; Cha DK
    Water Res; 2006 Jun; 40(10):2027-2032. PubMed ID: 16697026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of RDX degradation by zero-valent iron (ZVI).
    Wanaratna P; Christodoulatos C; Sidhoum M
    J Hazard Mater; 2006 Aug; 136(1):68-74. PubMed ID: 16386362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of hydrogen-dependent denitrification under varying pH and temperature conditions.
    Rezania B; Cicek N; Oleszkiewicz JA
    Biotechnol Bioeng; 2005 Dec; 92(7):900-6. PubMed ID: 16116656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Biotransformation of Nitrate to Nitrogen Gas Driven by ANAMMOX Microbes via Zero-valent Iron Under Anaerobic Conditions].
    Zhou J; Wanyan DQ; Huang Y; Liu X; Yuan Y; Li X; Yao PC; Yang PB; Xue PC
    Huan Jing Ke Xue; 2016 Nov; 37(11):4302-4308. PubMed ID: 29964685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron.
    Ritter K; Odziemkowski MS; Simpgraga R; Gillham RW; Irish DE
    J Contam Hydrol; 2003 Aug; 65(1-2):121-36. PubMed ID: 12855204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface.
    Luo J; Song G; Liu J; Qian G; Xu ZP
    J Colloid Interface Sci; 2014 Dec; 435():21-5. PubMed ID: 25217726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal.
    Wang W; Jin ZH; Li TL; Zhang H; Gao S
    Chemosphere; 2006 Nov; 65(8):1396-404. PubMed ID: 16707148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles.
    Liou YH; Lo SL; Lin CJ; Kuan WH; Weng SC
    J Hazard Mater; 2005 Dec; 127(1-3):102-10. PubMed ID: 16081210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.