BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

701 related articles for article (PubMed ID: 18180166)

  • 1. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy.
    Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM
    J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM
    J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial microscopy for the study of protein-membrane interactions in supported lipid bilayers: Order parameter measurements by combined polarized TIRFM/AFM.
    Oreopoulos J; Yip CM
    J Struct Biol; 2009 Oct; 168(1):21-36. PubMed ID: 19268707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force microscopy study of ganglioside GM1 concentration effect on lateral phase separation of sphingomyelin/dioleoylphosphatidylcholine/cholesterol bilayers.
    Bao R; Li L; Qiu F; Yang Y
    J Phys Chem B; 2011 May; 115(19):5923-9. PubMed ID: 21526782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemical study into the interaction between complement-derived peptides and DOPC mono- and bilayers.
    Ringstad L; Protopapa E; Lindholm-Sethson B; Schmidtchen A; Nelson A; Malmsten M
    Langmuir; 2008 Jan; 24(1):208-16. PubMed ID: 18052298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ternary lipid bilayers containing cholesterol in a high curvature silica xerogel environment.
    Goksu EI; Longo ML
    Langmuir; 2010 Jun; 26(11):8614-24. PubMed ID: 20143868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking peptide-membrane interactions: insights from in situ coupled confocal-atomic force microscopy imaging of NAP-22 peptide insertion and assembly.
    Shaw JE; Epand RF; Sinnathamby K; Li Z; Bittman R; Epand RM; Yip CM
    J Struct Biol; 2006 Sep; 155(3):458-69. PubMed ID: 16889981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An atomic force microscopy study of the interactions between indolicidin and supported planar bilayers.
    Askou HJ; Jakobsen RN; Fojan P
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4360-9. PubMed ID: 19049026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction and lipid-induced conformation of two cecropin-melittin hybrid peptides depend on peptide and membrane composition.
    Abrunhosa F; Faria S; Gomes P; Tomaz I; Pessoa JC; Andreu D; Bastos M
    J Phys Chem B; 2005 Sep; 109(36):17311-9. PubMed ID: 16853210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase segregation of untethered zwitterionic model lipid bilayers observed on mercaptoundecanoic-acid-modified gold by AFM imaging and force mapping.
    Ip S; Li JK; Walker GC
    Langmuir; 2010 Jul; 26(13):11060-70. PubMed ID: 20387821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions.
    Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P
    Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusogenic tilted peptides induce nanoscale holes in supported phosphatidylcholine bilayers.
    El Kirat K; Lins L; Brasseur R; Dufrêne YF
    Langmuir; 2005 Mar; 21(7):3116-21. PubMed ID: 15779993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers.
    Ciobanasu C; Harms E; Tünnemann G; Cardoso MC; Kubitscheck U
    Biochemistry; 2009 Jun; 48(22):4728-37. PubMed ID: 19400584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of supported membrane disruption by antimicrobial peptide protegrin-1.
    Lam KL; Ishitsuka Y; Cheng Y; Chien K; Waring AJ; Lehrer RI; Lee KY
    J Phys Chem B; 2006 Oct; 110(42):21282-6. PubMed ID: 17048957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the cationic antimicrobial peptide eumenitin from the venom of solitary wasp Eumenes rubronotatus in planar lipid bilayers: surface charge and pore formation activity.
    Arcisio-Miranda M; dos Santos Cabrera MP; Konno K; Rangel M; Procopio J
    Toxicon; 2008 Apr; 51(5):736-45. PubMed ID: 18206199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral organization of GM1 in phase-separated monolayers visualized by scanning force microscopy.
    Menke M; Künneke S; Janshoff A
    Eur Biophys J; 2002 Jul; 31(4):317-22. PubMed ID: 12122478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.