BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18180293)

  • 1. Mechanism and tissue specificity of nicotine-mediated lung S-adenosylmethionine reduction.
    Moncada CA; Clarkson A; Perez-Leal O; Merali S
    J Biol Chem; 2008 Mar; 283(12):7690-6. PubMed ID: 18180293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nicotine on lung S-adenosylmethionine and development of Pneumocystis pneumonia.
    Shivji M; Burger S; Moncada CA; Clarkson AB; Merali S
    J Biol Chem; 2005 Apr; 280(15):15219-28. PubMed ID: 15668255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pneumocystis mediates overexpression of antizyme inhibitor resulting in increased polyamine levels and apoptosis in alveolar macrophages.
    Liao CP; Lasbury ME; Wang SH; Zhang C; Durant PJ; Murakami Y; Matsufuji S; Lee CH
    J Biol Chem; 2009 Mar; 284(12):8174-84. PubMed ID: 19158080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumour promoter mediated altered expression and regulation of ornithine decarboxylase and S-adenosylmethionine decarboxylase in H-ras-transformed fibrosarcoma cell lines.
    Voskas D; Mader R; Lee J; Hurta RA
    Biochem Cell Biol; 2001; 79(1):69-81. PubMed ID: 11235918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S-adenosylmethionine and Pneumocystis.
    Merali S; Clarkson AB
    FEMS Microbiol Lett; 2004 Aug; 237(2):179-86. PubMed ID: 15321660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inflammatory cells are sources of polyamines that induce alveolar macrophage to undergo apoptosis during Pneumocystis pneumonia.
    Liao CP; Lasbury ME; Wang SH; Zhang C; Durant PJ; Tschang D; Lee CH
    J Eukaryot Microbiol; 2006; 53 Suppl 1():S134-5. PubMed ID: 17169031
    [No Abstract]   [Full Text] [Related]  

  • 7. Decarboxylases involved in polyamine biosynthesis and their inactivation by nitric oxide.
    Hillary RA; Pegg AE
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):161-6. PubMed ID: 12686127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monocrotaline alters type II pneumocyte morphology and polyamine regulation.
    Baybutt RC; Aziz SM; Fagerland JA; Olson JW; Gillespie MN
    Toxicol Appl Pharmacol; 1994 Dec; 129(2):188-95. PubMed ID: 7992309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures.
    Imanishi S; Hashizume K; Nakakita M; Kojima H; Matsubayashi Y; Hashimoto T; Sakagami Y; Yamada Y; Nakamura K
    Plant Mol Biol; 1998 Dec; 38(6):1101-11. PubMed ID: 9869416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-inhibition of Plasmodium falciparum S-adenosylmethionine decarboxylase/ornithine decarboxylase reveals perturbation-specific compensatory mechanisms by transcriptome, proteome, and metabolome analyses.
    van Brummelen AC; Olszewski KL; Wilinski D; LlinĂ¡s M; Louw AI; Birkholtz LM
    J Biol Chem; 2009 Feb; 284(7):4635-46. PubMed ID: 19073607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjustment of polyamine contents in Escherichia coli.
    Kashiwagi K; Igarashi K
    J Bacteriol; 1988 Jul; 170(7):3131-5. PubMed ID: 3290196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of 4-fluoro-L-ornithine to monitor metabolic flux through the polyamine biosynthetic pathway.
    Kramer D; Stanek J; Diegelman P; Regenass U; Schneider P; Porter CW
    Biochem Pharmacol; 1995 Oct; 50(9):1433-43. PubMed ID: 7503794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic and antiproliferative consequences of activated polyamine catabolism in LNCaP prostate carcinoma cells.
    Kee K; Vujcic S; Merali S; Diegelman P; Kisiel N; Powell CT; Kramer DL; Porter CW
    J Biol Chem; 2004 Jun; 279(26):27050-8. PubMed ID: 15096507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyamine metabolism in Pneumocystis carinii.
    Lipschik GY; Masur H; Kovacs JA
    J Infect Dis; 1991 May; 163(5):1121-7. PubMed ID: 2019760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain polyamine stress response: recurrence after repetitive stressor and inhibition by lithium.
    Gilad GM; Gilad VH
    J Neurochem; 1996 Nov; 67(5):1992-6. PubMed ID: 8863505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis and metabolism of polyamines and S-adenosylmethionine in the rat.
    Raina A; Eloranta T; Kajander O
    Biochem Soc Trans; 1976; 4(6):968-71. PubMed ID: 1022593
    [No Abstract]   [Full Text] [Related]  

  • 17. Methionine deficiency does not increase polyamine turnover through depletion of hepatic S-adenosylmethionine in juvenile Atlantic salmon.
    Espe M; Andersen SM; Holen E; Rønnestad I; Veiseth-Kent E; Zerrahn JE; Aksnes A
    Br J Nutr; 2014 Oct; 112(8):1274-85. PubMed ID: 25196630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamine metabolism.
    Seiler N
    Digestion; 1990; 46 Suppl 2():319-30. PubMed ID: 2262065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of polyamine depletion and accumulation of decarboxylated S-adenosylmethionine in the inhibition of growth of SV-3T3 cells treated with alpha-difluoromethylornithine.
    Pegg AE
    Biochem J; 1984 Nov; 224(1):29-38. PubMed ID: 6439194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective regulation of nicotine and polyamines biosynthesis in tobacco cells by enantiomers of ornithine.
    Gholami M; Fakhari AR; Ghanati F
    Chirality; 2013 Jan; 25(1):22-7. PubMed ID: 22996307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.