These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1818093)

  • 1. Reaction mechanisms in peptide synthesis. Part 2. Tautomerism of the peptide bond.
    Ciarkowski J; Chen FM; Benoiton NL
    J Comput Aided Mol Des; 1991 Dec; 5(6):599-616. PubMed ID: 1818093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction mechanisms in peptide synthesis. Part 1. Semiquantitative characteristics of the reactivity of 2-methyl-5(4H)-oxazolone with water and ammonia in the gas phase and weakly polar media.
    Ciarkowski J; Chen FM; Benoiton NL
    J Comput Aided Mol Des; 1991 Dec; 5(6):585-97. PubMed ID: 1818092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum chemical studies of a model for peptide bond formation. 3. Role of magnesium cation in formation of amide and water from ammonia and glycine.
    Oie T; Loew GH; Burt SK; MacElroy RD
    J Am Chem Soc; 1984; 106(26):8007-13. PubMed ID: 11541992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide bond formation via glycine condensation in the gas phase.
    Van Dornshuld E; Vergenz RA; Tschumper GS
    J Phys Chem B; 2014 Jul; 118(29):8583-90. PubMed ID: 24992687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of formamide hydrolysis in water from ab initio calculations and simulations.
    Gorb L; Asensio A; Tuñón I; Ruiz-López MF
    Chemistry; 2005 Nov; 11(22):6743-53. PubMed ID: 16130156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photo-stability of peptide-bond aggregates: N-methylformamide dimers.
    Crespo-Otero R; Mardykov A; Sanchez-Garcia E; Sander W; Barbatti M
    Phys Chem Chem Phys; 2014 Sep; 16(35):18877-87. PubMed ID: 25081138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide cation-radicals. A computational study of the competition between peptide N-Calpha bond cleavage and loss of the side chain in the [GlyPhe-NH2 + 2H]+. cation-radical.
    Turecek F; Syrstad EA; Seymour JL; Chen X; Yao C
    J Mass Spectrom; 2003 Oct; 38(10):1093-104. PubMed ID: 14595859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange.
    Houry WA; Scheraga HA
    Biochemistry; 1996 Sep; 35(36):11734-46. PubMed ID: 8794754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of cis-trans isomerization of prolyl peptides by cyclophilin.
    Hur S; Bruice TC
    J Am Chem Soc; 2002 Jun; 124(25):7303-13. PubMed ID: 12071739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of trans-hydrogen-bond 13C-15N three-bond and other scalar J-couplings in cooperative peptide models. A density functional theory study.
    Salvador P; Kobko N; Wieczorek R; Dannenberg JJ
    J Am Chem Soc; 2004 Nov; 126(43):14190-7. PubMed ID: 15506785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational study of the hydroxyproline-O-glycosidic linkage: sugar-peptide orientation and prolyl amide isomerization in (α/β)-galactosylated 4(R/S)-hydroxyproline.
    Naziga EB; Schweizer F; Wetmore SD
    J Phys Chem B; 2012 Jan; 116(2):860-71. PubMed ID: 22148719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on intramolecular hydrogen bonding between the pyridine nitrogen and the amide hydrogen of the peptide: synthesis and conformational analysis of tripeptides containing novel amino acids with a pyridine ring.
    Hanyu M; Ninomiya D; Yanagihara R; Murashima T; Miyazawa T; Yamada T
    J Pept Sci; 2005 Jul; 11(8):491-8. PubMed ID: 15747319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational preferences and prolyl cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs.
    Byun BJ; Kang YK
    Biopolymers; 2010 Apr; 93(4):330-9. PubMed ID: 19885922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intra- and intermolecular interaction inducing pyramidalization on both sides of a proline dipeptide during isomerization: an ab initio QM/MM molecular dynamics simulation study in explicit water.
    Yonezawa Y; Nakata K; Sakakura K; Takada T; Nakamura H
    J Am Chem Soc; 2009 Apr; 131(12):4535-40. PubMed ID: 19267429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular dynamics simulation of reactant mobility in an amorphous formulation of a peptide in poly(vinylpyrrolidone).
    Xiang TX; Anderson BD
    J Pharm Sci; 2004 Apr; 93(4):855-76. PubMed ID: 14999724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transitions from alpha to pi helix observed in molecular dynamics simulations of synthetic peptides.
    Lee KH; Benson DR; Kuczera K
    Biochemistry; 2000 Nov; 39(45):13737-47. PubMed ID: 11076513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cis-trans isomerization and puckering of proline residue.
    Kang YK; Choi HY
    Biophys Chem; 2004 Oct; 111(2):135-42. PubMed ID: 15381311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum energy flow and the kinetics of water shuttling between hydrogen bonding sites on trans-formanilide.
    Agbo JK; Leitner DM; Myshakin EM; Jordan KD
    J Chem Phys; 2007 Aug; 127(6):064315. PubMed ID: 17705604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enol-to-keto tautomerism of peptide groups.
    Kamiya K; Boero M; Shiraishi K; Oshiyama A
    J Phys Chem B; 2006 Mar; 110(9):4443-50. PubMed ID: 16509747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of amide hydrogen bond formation in polar and apolar solvents.
    Sneddon SF; Tobias DJ; Brooks CL
    J Mol Biol; 1989 Oct; 209(4):817-20. PubMed ID: 2585511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.