These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18180950)

  • 1. A structural motif in the C-terminal tail of slo1 confers carbon monoxide sensitivity to human BK Ca channels.
    Williams SE; Brazier SP; Baban N; Telezhkin V; Müller CT; Riccardi D; Kemp PJ
    Pflugers Arch; 2008 Jun; 456(3):561-72. PubMed ID: 18180950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels.
    Hou S; Xu R; Heinemann SH; Hoshi T
    Proc Natl Acad Sci U S A; 2008 Mar; 105(10):4039-43. PubMed ID: 18316727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine residues in the C-terminal tail of the human BK(Ca)alpha subunit are important for channel sensitivity to carbon monoxide.
    Brazier SP; Telezhkin V; Mears R; Müller CT; Riccardi D; Kemp PJ
    Adv Exp Med Biol; 2009; 648():49-56. PubMed ID: 19536464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine residue 911 in C-terminal tail of human BK(Ca)α channel subunit is crucial for its activation by carbon monoxide.
    Telezhkin V; Brazier SP; Mears R; Müller CT; Riccardi D; Kemp PJ
    Pflugers Arch; 2011 Jun; 461(6):665-75. PubMed ID: 21301863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of calcium- and voltage-gated potassium channels of large conductance by leukotriene B4.
    Bukiya AN; McMillan J; Liu J; Shivakumar B; Parrill AL; Dopico AM
    J Biol Chem; 2014 Dec; 289(51):35314-25. PubMed ID: 25371198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BK channel activation by tungstate requires the β1 subunit extracellular loop residues essential to modulate voltage sensor function and channel gating.
    Fernández-Mariño AI; Valverde MA; Fernández-Fernández JM
    Pflugers Arch; 2014 Jul; 466(7):1365-75. PubMed ID: 24158430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a thiol/disulfide redox switch in the human BK channel that controls its affinity for heme and CO.
    Yi L; Morgan JT; Ragsdale SW
    J Biol Chem; 2010 Jun; 285(26):20117-27. PubMed ID: 20427280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid.
    Hoshi T; Xu R; Hou S; Heinemann SH; Tian Y
    J Gen Physiol; 2013 Nov; 142(5):507-22. PubMed ID: 24127525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of Slo1 K+ channels with and without the gating ring.
    Budelli G; Geng Y; Butler A; Magleby KL; Salkoff L
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16657-62. PubMed ID: 24067659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional validation of Ca
    Kshatri AS; Gonzalez-Hernandez AJ; Giraldez T
    Biochim Biophys Acta Biomembr; 2018 Apr; 1860(4):943-952. PubMed ID: 28966112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of BK channel gating by the ß2 subunit involves both membrane-spanning and cytoplasmic domains of Slo1.
    Lee US; Shi J; Cui J
    J Neurosci; 2010 Dec; 30(48):16170-9. PubMed ID: 21123563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of pharmacological activation of BK channels.
    Gessner G; Cui YM; Otani Y; Ohwada T; Soom M; Hoshi T; Heinemann SH
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3552-7. PubMed ID: 22331907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canonical transient receptor potential channel (TRPC)3 and TRPC6 associate with large-conductance Ca2+-activated K+ (BKCa) channels: role in BKCa trafficking to the surface of cultured podocytes.
    Kim EY; Alvarez-Baron CP; Dryer SE
    Mol Pharmacol; 2009 Mar; 75(3):466-77. PubMed ID: 19052171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slo1 tail domains, but not the Ca2+ bowl, are required for the beta 1 subunit to increase the apparent Ca2+ sensitivity of BK channels.
    Qian X; Nimigean CM; Niu X; Moss BL; Magleby KL
    J Gen Physiol; 2002 Dec; 120(6):829-43. PubMed ID: 12451052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. {beta} subunit-specific modulations of BK channel function by a mutation associated with epilepsy and dyskinesia.
    Lee US; Cui J
    J Physiol; 2009 Apr; 587(Pt 7):1481-98. PubMed ID: 19204046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gating and ionic currents reveal how the BKCa channel's Ca2+ sensitivity is enhanced by its beta1 subunit.
    Bao L; Cox DH
    J Gen Physiol; 2005 Oct; 126(4):393-412. PubMed ID: 16186565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homology modeling identifies C-terminal residues that contribute to the Ca2+ sensitivity of a BKCa channel.
    Sheng JZ; Weljie A; Sy L; Ling S; Vogel HJ; Braun AP
    Biophys J; 2005 Nov; 89(5):3079-92. PubMed ID: 16100257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for differential modulation of BK channel voltage-dependent gating by auxiliary γ subunits.
    Li Q; Fan F; Kwak HR; Yan J
    J Gen Physiol; 2015 Jun; 145(6):543-54. PubMed ID: 26009545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of beta4 subunit modulation of BK channels.
    Wang B; Rothberg BS; Brenner R
    J Gen Physiol; 2006 Apr; 127(4):449-65. PubMed ID: 16567466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the Ca(2+)-dependent K+ channel, hslo, by the substituted diphenylurea NS 1608, paxilline and internal Ca2+.
    Strøbaek D; Christophersen P; Holm NR; Moldt P; Ahring PK; Johansen TE; Olesen SP
    Neuropharmacology; 1996; 35(7):903-14. PubMed ID: 8938721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.