BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 18182020)

  • 21. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis.
    Winter K; Holtum JA
    J Exp Bot; 2014 Jul; 65(13):3425-41. PubMed ID: 24642847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short-term changes in carbon-isotope discrimination in the C
    Borland AM; Griffiths H; Broadmeadow MS; Fordham MC; Maxwell C
    Oecologia; 1993 Sep; 95(3):444-453. PubMed ID: 28314023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is crassulacean acid metabolism activity in sympatric species of hemi-epiphytic stranglers such as Clusia related to carbon cycling as a photoprotective process?
    Roberts A; Griffiths H; Borland AM; Reinert F
    Oecologia; 1996 Apr; 106(1):28-38. PubMed ID: 28307154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crassulacean acid metabolism in the Basellaceae (Caryophyllales).
    Holtum JAM; Hancock LP; Edwards EJ; Winter K
    Plant Biol (Stuttg); 2018 May; 20(3):409-414. PubMed ID: 29369469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light stress is not effective to enhanced crassulacean acid metabolism.
    Kornas A; Miszalski Z; Surówka E; Fischer-Schliebs E; Lüttge U
    Z Naturforsch C J Biosci; 2010; 65(1-2):79-86. PubMed ID: 20355326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosotynthesis in hemiepiphytic species of Clusia and Ficus.
    Ting IP; Hann J; Holbrook NM; Putz FE; Sternberg LD; Price D; Goldstein G
    Oecologia; 1987 Dec; 74(3):339-346. PubMed ID: 28312470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes. Implications for genotypic capacity and phenotypic plasticity in the expression of crassulacean acid metabolism.
    Taybi T; Nimmo HG; Borland AM
    Plant Physiol; 2004 May; 135(1):587-98. PubMed ID: 15133148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response?
    Ruts T; Matsubara S; Wiese-Klinkenberg A; Walter A
    J Exp Bot; 2012 May; 63(9):3339-51. PubMed ID: 22223810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae.
    Guralnick LJ; Cline A; Smith M; Sage RF
    J Exp Bot; 2008; 59(7):1735-42. PubMed ID: 18440927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of Anthesis-Silking Interval to water deficit.
    Welcker C; Boussuge B; Bencivenni C; Ribaut JM; Tardieu F
    J Exp Bot; 2007; 58(2):339-49. PubMed ID: 17130185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of growth, photosynthetic capacity and water stress in Eucalyptus globulus coppice regrowth and seedlings during early development.
    Drake PL; Mendham DS; White DA; Ogden GN
    Tree Physiol; 2009 May; 29(5):663-74. PubMed ID: 19324701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shifting photosynthesis between the fast and slow lane: Facultative CAM and water-deficit stress.
    Winter K; Holtum JAM
    J Plant Physiol; 2024 Mar; 294():154185. PubMed ID: 38373389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light and dark CO
    Winter K; Zotz G; Baur B; Dietz KJ
    Oecologia; 1992 Aug; 91(1):47-51. PubMed ID: 28313372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential usage of storage carbohydrates in the CAM bromeliad Aechmea 'Maya' during acclimation to drought and recovery from dehydration.
    Ceusters J; Borland AM; Londers E; Verdoodt V; Godts C; De Proft MP
    Physiol Plant; 2009 Feb; 135(2):174-84. PubMed ID: 19077141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sex-specific physiological, allocation and growth responses to water availability in the subdioecious plant Honckenya peploides.
    Sánchez-Vilas J; Retuerto R
    Plant Biol (Stuttg); 2009 Mar; 11(2):243-54. PubMed ID: 19228331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbohydrate partitioning in crassulacean acid metabolism plants: reconciling potential conflicts of interest.
    Borland AM; Dodd AN
    Funct Plant Biol; 2002 Jun; 29(6):707-716. PubMed ID: 32689517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photosynthetic flexibility and ecophysiological plasticity: questions and lessons from Clusia, the only CAM tree, in the neotropics.
    Lüttge U
    New Phytol; 2006; 171(1):7-25. PubMed ID: 16771979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sink-source transition.
    Li JY; Liu XH; Cai QS; Gu H; Zhang SS; Wu YY; Wang CJ
    J Integr Plant Biol; 2008 Jun; 50(6):723-32. PubMed ID: 18713413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of rhythmic subsystems in the circadian cycle of crassulacean acid metabolism under thermoperiodic perturbations.
    Bohn A; Hinderlich S; Hütt MT; Kaiser F; Lüttge U
    Biol Chem; 2003 May; 384(5):721-8. PubMed ID: 12817468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mode of photosynthesis during different life stages of hemiepiphytic Clusia species.
    Wanek W; Huber W; Arndt SK; Popp M
    Funct Plant Biol; 2002 Jun; 29(6):725-732. PubMed ID: 32689519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.