These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Effects of a novel anti-exospore monoclonal antibody on microsporidial Nosema bombycis germination and reproduction in vitro. Zhang F; Lu X; Kumar VS; Zhu H; Chen H; Chen Z; Hong J Parasitology; 2007 Oct; 134(Pt 11):1551-8. PubMed ID: 17577423 [TBL] [Abstract][Full Text] [Related]
23. The spore wall and polar tube proteins of the microsporidian Nosema grylli: the major spore wall protein is released before spore extrusion. Dolgikh VV; Semenov PB Tsitologiia; 2003; 45(3):324-9. PubMed ID: 14520889 [TBL] [Abstract][Full Text] [Related]
24. In vitro cultivation of the human microsporidium Vittaforma corneae: development and effect of albendazole. Silveira H; Canning EU Folia Parasitol (Praha); 1995; 42(4):241-50. PubMed ID: 8774778 [TBL] [Abstract][Full Text] [Related]
25. New cell lines from larval fat bodies of Spodoptera exigua: characterization and susceptibility to baculoviruses (Lepidoptera: Noctuidae). Zhang H; Zhang YA; Qin Q; Li X; Miao L; Wang Y; Yang Z; Ding C J Invertebr Pathol; 2006 Jan; 91(1):9-12. PubMed ID: 16376374 [TBL] [Abstract][Full Text] [Related]
26. [Peculiarities of metabolism of the microsporidia Nosema grylli during the intracellular development]. Dolgikh VV; Semenov PS; Grigor'ev MV Parazitologiia; 2002; 36(6):493-501. PubMed ID: 12624965 [TBL] [Abstract][Full Text] [Related]
27. Detection of Nosema locustae (Microsporidia:Nosematidae) in frozen grasshoppers (Orthoptera:Acrididae) by using monoclonal antibodies. Knoblett JN; Youssef NN J Econ Entomol; 1996 Aug; 89(4):841-7. PubMed ID: 8768890 [TBL] [Abstract][Full Text] [Related]
28. Morphological and molecular characterization of a new microsporidian (Protozoa: Microsporidia) isolated from Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Johny S; Kanginakudru S; Muralirangan MC; Nagaraju J Parasitology; 2006 Jun; 132(Pt 6):803-14. PubMed ID: 16469201 [TBL] [Abstract][Full Text] [Related]
29. Increase of Albinistic Hosts Caused by Gut Parasites Promotes Self-Transmission. Tan S; Wang Y; Liu P; Ge Y; Li A; Xing Y; Hunter DM; Shi W Front Microbiol; 2018; 9():1525. PubMed ID: 30042753 [No Abstract] [Full Text] [Related]
30. Spore loads of Paranosema locustae (Microsporidia) in heavily infected grasshoppers (Orthoptera: Acridoidea) of the Argentine Pampas and Patagonia. Plischuk S; Bardi CJ; Lange CE J Invertebr Pathol; 2013 Sep; 114(1):89-91. PubMed ID: 23796497 [TBL] [Abstract][Full Text] [Related]
31. Nosema chrysorrhoeae n. sp. (Microsporidia), isolated from browntail moth (Euproctis chrysorrhoea L.) (Lepidoptera, Lymantriidae) in Bulgaria: characterization and phylogenetic relationships. Hylis M; Pilarska DK; Oborník M; Vávra J; Solter LF; Weiser J; Linde A; McManus ML J Invertebr Pathol; 2006 Feb; 91(2):105-14. PubMed ID: 16410011 [TBL] [Abstract][Full Text] [Related]
32. Quantifying horizontal transmission of Nosema lymantriae, a microsporidian pathogen of the gypsy moth, Lymantria dispar (Lep., Lymantriidae) in field cage studies. Hoch G; D'Amico V; Solter LF; Zubrik M; McManus ML J Invertebr Pathol; 2008 Oct; 99(2):146-50. PubMed ID: 18601930 [TBL] [Abstract][Full Text] [Related]
33. Identification of a novel spore wall protein (SWP26) from microsporidia Nosema bombycis. Li Y; Wu Z; Pan G; He W; Zhang R; Hu J; Zhou Z Int J Parasitol; 2009 Mar; 39(4):391-8. PubMed ID: 18854188 [TBL] [Abstract][Full Text] [Related]
34. Establishment of a cell line from Spodoptera litura (Lepidoptera: Noctuidae) and replication of S. litura nuclear polyhedrosis virus in vitro. Shih CJ; Lin RW; Wang CH J Invertebr Pathol; 1997 Jan; 69(1):1-6. PubMed ID: 9028921 [TBL] [Abstract][Full Text] [Related]
35. Studies on the impact of two Nosema isolates from Bulgaria on the gypsy moth (Lymantria dispar L.). Goertz D; Pilarska D; Kereselidze M; Solter LF; Linde A J Invertebr Pathol; 2004; 87(2-3):105-13. PubMed ID: 15579319 [TBL] [Abstract][Full Text] [Related]
36. Visualization of early golgi compartments at proliferate and sporogenic stages of a microsporidian Nosema grylli. Sokolova Y; Snigirevskaya E; Morzhina E; Skarlato S; Mironov A; Komissarchik Y J Eukaryot Microbiol; 2001; Suppl():86S-87S. PubMed ID: 11906092 [No Abstract] [Full Text] [Related]
37. In vitro cultivation and electron microscopy characterization of Trachipleistophora anthropophthera isolated from the cornea of an AIDS patient. Juarez SI; Putaporntip C; Jongwutiwes S; Ichinose A; Yanagi T; Kanbara H J Eukaryot Microbiol; 2005; 52(3):179-90. PubMed ID: 15926993 [TBL] [Abstract][Full Text] [Related]
38. Transformed lepidopteran cells expressing a protein of the silkmoth fat body display enhanced susceptibility to baculovirus infection and produce high titers of budded virus in serum-free media. Iatrou K; Swevers L J Biotechnol; 2005 Nov; 120(3):237-50. PubMed ID: 16233927 [TBL] [Abstract][Full Text] [Related]
39. Bacterial catalase in the microsporidian Nosema locustae: implications for microsporidian metabolism and genome evolution. Fast NM; Law JS; Williams BA; Keeling PJ Eukaryot Cell; 2003 Oct; 2(5):1069-75. PubMed ID: 14555490 [TBL] [Abstract][Full Text] [Related]
40. New case of long-term persistence of Paranosema locustae (Microsporidia) in melanopline grasshoppers (Orthoptera: Acrididae: Melanoplinae) of Argentina. Lange CE; Azzaro FG J Invertebr Pathol; 2008 Nov; 99(3):357-9. PubMed ID: 18814843 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]