These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18182258)

  • 21. A novel fast disintegrating tablet fabricated by three-dimensional printing.
    Yu DG; Branford-White C; Yang YC; Zhu LM; Welbeck EW; Yang XL
    Drug Dev Ind Pharm; 2009 Dec; 35(12):1530-6. PubMed ID: 19929213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maltodextrin: a novel excipient used in sugar-based orally disintegrating tablets and phase transition process.
    Elnaggar YS; El-Massik MA; Abdallah OY; Ebian AE
    AAPS PharmSciTech; 2010 Jun; 11(2):645-51. PubMed ID: 20405257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and evaluation of orally disintegrating tablets of cilostazol-β-cyclodextrin inclusion complexes.
    Desai C; Prabhakar B
    Drug Dev Ind Pharm; 2015; 41(10):1589-607. PubMed ID: 25350555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of processing methods on xylitol-starch base co-processed adjuvant for orally disintegrating tablet application.
    Bin LK; Helaluddin ABM; Islam Sarker MZ; Mandal UK; Gaurav A
    Pak J Pharm Sci; 2020 Mar; 33(2):551-559. PubMed ID: 32276897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance.
    Kaialy W; Maniruzzaman M; Shojaee S; Nokhodchi A
    Int J Pharm; 2014 Dec; 477(1-2):282-93. PubMed ID: 25447824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and evaluation of medicinal carbon tablets with different saccharides as binders.
    Yamamoto K; Ito A; Machida Y
    Chem Pharm Bull (Tokyo); 2009 Oct; 57(10):1058-60. PubMed ID: 19801858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of xylitol on the stability and morphological parameters of tablets with sorbitol made by direct tabletting of formulation components.
    Zgoda MM; Woskowicz M; Nachajski M; Haeusler O; Iwanczyk M
    Pharmazie; 2004 Aug; 59(8):651-3. PubMed ID: 15378860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of non-water-soluble placebo pellets of different sizes on the characteristics of orally disintegrating tablets manufactured by freeze-drying.
    Stange U; Führling C; Gieseler H
    J Pharm Sci; 2013 Jun; 102(6):1786-1799. PubMed ID: 23568590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of fast disintegrating compressed tablets using amino acid as disintegration accelerator: evaluation of wetting and disintegration of tablet on the basis of surface free energy.
    Fukami J; Ozawa A; Yoshihashi Y; Yonemochi E; Terada K
    Chem Pharm Bull (Tokyo); 2005 Dec; 53(12):1536-9. PubMed ID: 16327184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A pragmatic approach for engineering porous mannitol and mechanistic evaluation of particle performance.
    Al-Khattawi A; Koner J; Rue P; Kirby D; Perrie Y; Rajabi-Siahboomi A; Mohammed AR
    Eur J Pharm Biopharm; 2015 Aug; 94():1-10. PubMed ID: 25960332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of active ingredients on the swelling properties of orally disintegrating tablets prepared by microwave treatment.
    Sano S; Iwao Y; Kimura S; Noguchi S; Itai S
    Int J Pharm; 2014 Jul; 468(1-2):234-42. PubMed ID: 24709215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the mechanism for paradoxical effect of ionized and unionized chitosan: Orodispersible tablets of Ondansetron Hydrochloride.
    Goel H; Vora N; Tiwary AK; Rana V
    Pharm Dev Technol; 2009; 14(5):476-84. PubMed ID: 19241220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of face centred central composite design to optimise compression force and tablet diameter for the formulation of mechanically strong and fast disintegrating orodispersible tablets.
    Pabari RM; Ramtoola Z
    Int J Pharm; 2012 Jul; 430(1-2):18-25. PubMed ID: 22465631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of rapidly disintegrating tablets containing glycine and carboxymethylcellulose.
    Fukami J; Yonemochi E; Yoshihashi Y; Terada K
    Int J Pharm; 2006 Mar; 310(1-2):101-9. PubMed ID: 16434157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of a prolonged-release tablet formulation of diclofenac sodium. Part 1: Using chitosan.
    Acartürk F
    Pharmazie; 1989 Aug; 44(8):547-9. PubMed ID: 2594826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast-melting tablets based on highly plastic granules.
    Fu Y; Jeong SH; Park K
    J Control Release; 2005 Dec; 109(1-3):203-10. PubMed ID: 16260059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemometric evaluation of pharmaceutical properties of antipyrine granules by near-infrared spectroscopy.
    Otsuka M; Mouri Y; Matsuda Y
    AAPS PharmSciTech; 2003; 4(3):E47. PubMed ID: 14621979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of medicinal carbon tablets by modified wet compression method.
    Miyachi M; Onishi H; Yumoto T; Machida Y
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1333-8. PubMed ID: 19832633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and evaluation of orally disintegrating tablets containing vitamin E as a model fat-soluble drug.
    Ikematsu Y; Uchida S; Namiki N
    Chem Pharm Bull (Tokyo); 2015; 63(3):156-63. PubMed ID: 25757486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.