BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 18182402)

  • 41. Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana.
    Carrie C; Murcha MW; Kuehn K; Duncan O; Barthet M; Smith PM; Eubel H; Meyer E; Day DA; Millar AH; Whelan J
    FEBS Lett; 2008 Sep; 582(20):3073-9. PubMed ID: 18703057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ca
    Fedotova OA; Polyakova EA; Grabelnych OI
    J Plant Physiol; 2023 Apr; 283():153943. PubMed ID: 36841182
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco.
    Polanská L; Vicánková A; Nováková M; Malbeck J; Dobrev PI; Brzobohaty B; Vanková R; Machácková I
    J Exp Bot; 2007; 58(3):637-49. PubMed ID: 17175552
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf discs exposed to paraquat.
    Iannone MF; Rosales EP; Groppa MD; Benavides MP
    Biol Trace Elem Res; 2012 May; 146(2):246-55. PubMed ID: 22101472
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement.
    Paim BA; Velho JA; Castilho RF; Oliveira HC; Vercesi AE
    Free Radic Biol Med; 2008 Feb; 44(3):444-51. PubMed ID: 17991444
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress.
    Wang J; Vanlerberghe GC
    Physiol Plant; 2013 Dec; 149(4):461-73. PubMed ID: 23582049
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Activity of NADP-dependent dehydrogenases and level of recovery of pyridine nucleotides in the rat brain in insulin hypoglycemia and in the recuperative period].
    Telushkin PK; Potapov PP
    Vopr Med Khim; 1995; 41(3):26-8. PubMed ID: 8585173
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria.
    Johansson FI; Michalecka AM; Møller IM; Rasmusson AG
    Biochem J; 2004 May; 380(Pt 1):193-202. PubMed ID: 14972026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant.
    Juszczuk IM; Flexas J; Szal B; Dabrowska Z; Ribas-Carbo M; Rychter AM
    Physiol Plant; 2007 Dec; 131(4):527-41. PubMed ID: 18251845
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of calcium ions and inhibitors on internal NAD(P)H dehydrogenases in plant mitochondria.
    Rasmusson AG; Møller IM
    Eur J Biochem; 1991 Dec; 202(2):617-23. PubMed ID: 1722151
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation.
    Dutilleul C; Garmier M; Noctor G; Mathieu C; Chétrit P; Foyer CH; de Paepe R
    Plant Cell; 2003 May; 15(5):1212-26. PubMed ID: 12724545
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NADP-dehydrogenases from pepper fruits: effect of maturation.
    Mateos RM; Bonilla-Valverde D; del Río LA; Palma JM; Corpas FJ
    Physiol Plant; 2009 Feb; 135(2):130-9. PubMed ID: 19055545
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria.
    Pastore D; Trono D; Laus MN; Di Fonzo N; Flagella Z
    J Exp Bot; 2007; 58(2):195-210. PubMed ID: 17261694
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light.
    Yoshida K; Terashima I; Noguchi K
    Plant Cell Physiol; 2007 Apr; 48(4):606-14. PubMed ID: 17339232
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chloroplasts regulate leaf senescence: delayed senescence in transgenic ndhF-defective tobacco.
    Zapata JM; Guéra A; Esteban-Carrasco A; Martín M; Sabater B
    Cell Death Differ; 2005 Oct; 12(10):1277-84. PubMed ID: 15905880
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana.
    Voss I; Koelmann M; Wojtera J; Holtgrefe S; Kitzmann C; Backhausen JE; Scheibe R
    Physiol Plant; 2008 Jul; 133(3):584-98. PubMed ID: 18494733
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conditional modulation of NAD levels and metabolite profiles in Nicotiana sylvestris by mitochondrial electron transport and carbon/nitrogen supply.
    Hager J; Pellny TK; Mauve C; Lelarge-Trouverie C; De Paepe R; Foyer CH; Noctor G
    Planta; 2010 Apr; 231(5):1145-57. PubMed ID: 20182741
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Disruption of alternative NAD(P)H dehydrogenases leads to decreased mitochondrial ROS in Neurospora crassa.
    Carneiro P; Duarte M; Videira A
    Free Radic Biol Med; 2012 Jan; 52(2):402-9. PubMed ID: 22100504
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ca2+-binding and Ca2+-independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana.
    Geisler DA; Broselid C; Hederstedt L; Rasmusson AG
    J Biol Chem; 2007 Sep; 282(39):28455-28464. PubMed ID: 17673460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.