These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 18182432)
1. Temperature dependency of bark photosynthesis in beech (Fagus sylvatica L.) and birch (Betula pendula Roth.) trees. Wittmann C; Pfanz H J Exp Bot; 2007; 58(15-16):4293-306. PubMed ID: 18182432 [TBL] [Abstract][Full Text] [Related]
2. Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Gallé A; Feller U Physiol Plant; 2007 Nov; 131(3):412-21. PubMed ID: 18251880 [TBL] [Abstract][Full Text] [Related]
3. Low soil temperature inhibits the effect of high nutrient supply on photosynthetic response to elevated carbon dioxide concentration in white birch seedlings. Ambebe TF; Dang QL; Li J Tree Physiol; 2010 Feb; 30(2):234-43. PubMed ID: 20007132 [TBL] [Abstract][Full Text] [Related]
4. Development of leaf photosynthetic parameters in Betula pendula Roth leaves: correlations with photosystem I density. Eichelmann H; Oja V; Rasulov B; Padu E; Bichele I; Pettai H; Niinemets U; Laisk A Plant Biol (Stuttg); 2004 May; 6(3):307-18. PubMed ID: 15143439 [TBL] [Abstract][Full Text] [Related]
5. General trait relationships in stems: a study on the performance and interrelationships of several functional and structural parameters involved in corticular photosynthesis. Wittmann C; Pfanz H Physiol Plant; 2008 Dec; 134(4):636-48. PubMed ID: 19000198 [TBL] [Abstract][Full Text] [Related]
6. [The effect of light and temperature of the CO Schulze ED Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125 [TBL] [Abstract][Full Text] [Related]
7. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. Zhu XG; Ort DR; Whitmarsh J; Long SP J Exp Bot; 2004 May; 55(400):1167-75. PubMed ID: 15133059 [TBL] [Abstract][Full Text] [Related]
8. O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure. Löw M; Häberle KH; Warren CR; Matyssek R Plant Biol (Stuttg); 2007 Mar; 9(2):197-206. PubMed ID: 17357014 [TBL] [Abstract][Full Text] [Related]
9. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations. Ambebe TF; Dang QL Tree Physiol; 2009 Nov; 29(11):1341-8. PubMed ID: 19797245 [TBL] [Abstract][Full Text] [Related]
10. Photosystem II cycle and alternative electron flow in leaves. Laisk A; Eichelmann H; Oja V; Rasulov B; Rämma H Plant Cell Physiol; 2006 Jul; 47(7):972-83. PubMed ID: 16774929 [TBL] [Abstract][Full Text] [Related]
11. Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.). Wittmann C; Matyssek R; Pfanz H; Humar M Environ Pollut; 2007 Nov; 150(2):258-66. PubMed ID: 17374426 [TBL] [Abstract][Full Text] [Related]
12. Effects of water stress and high temperature on photosynthetic rates of two species of Prosopis. Delatorre J; Pinto M; Cardemil L J Photochem Photobiol B; 2008 Aug; 92(2):67-76. PubMed ID: 18571934 [TBL] [Abstract][Full Text] [Related]
13. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings. Pumpanen J; Heinonsalo J; Rasilo T; Villemot J; Ilvesniemi H Tree Physiol; 2012 Jun; 32(6):724-36. PubMed ID: 22345325 [TBL] [Abstract][Full Text] [Related]
14. Physiological performance of beech (Fagus sylvatica L.) at its southeastern distribution limit in Europe: seasonal changes in nitrogen, carbon and water balance. Nahm M; Radoglou K; Halyvopoulos G; Gessler A; Rennenberg H; Fotelli MN Plant Biol (Stuttg); 2006 Jan; 8(1):52-63. PubMed ID: 16435269 [TBL] [Abstract][Full Text] [Related]
15. Interactions and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology. Pollastrini M; Holland V; Brüggemann W; Koricheva J; Jussila I; Scherer-Lorenzen M; Berger S; Bussotti F Plant Biol (Stuttg); 2014 Mar; 16(2):323-31. PubMed ID: 23926925 [TBL] [Abstract][Full Text] [Related]
16. High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry. Dwyer SA; Ghannoum O; Nicotra A; von Caemmerer S Plant Cell Environ; 2007 Jan; 30(1):53-66. PubMed ID: 17177876 [TBL] [Abstract][Full Text] [Related]
17. Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation. Kornyeyev D; Logan BA; Tissue DT; Allen RD; Holaday AS Plant Cell Physiol; 2006 Apr; 47(4):437-46. PubMed ID: 16449233 [TBL] [Abstract][Full Text] [Related]
18. Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. Warren CR; Dreyer E J Exp Bot; 2006; 57(12):3057-67. PubMed ID: 16882645 [TBL] [Abstract][Full Text] [Related]
19. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide. Darbah JN; Sharkey TD; Calfapietra C; Karnosky DF Environ Pollut; 2010 Apr; 158(4):1008-14. PubMed ID: 19914751 [TBL] [Abstract][Full Text] [Related]
20. The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species. Huang W; Zhang SB; Cao KF Photosynth Res; 2010 Mar; 103(3):175-82. PubMed ID: 20221850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]