BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 18182696)

  • 1. Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit.
    Zheng Y; Fontenot J; Taddei P; Mirkovic D; Newhauser W
    Phys Med Biol; 2008 Jan; 53(1):187-201. PubMed ID: 18182696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
    DeMarco J; Kupelian P; Santhanam A; Low D
    Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: measurement with an extended-range Bonner sphere system.
    Howell RM; Burgett EA
    Med Phys; 2014 Sep; 41(9):092104. PubMed ID: 25186404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo study of neutron dose equivalent during passive scattering proton therapy.
    Zheng Y; Newhauser W; Fontenot J; Taddei P; Mohan R
    Phys Med Biol; 2007 Aug; 52(15):4481-96. PubMed ID: 17634645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stray neutron radiation exposures from proton therapy: physics-based analytical models of neutron spectral fluence, kerma and absorbed dose.
    Shrestha S; Newhauser WD; Donahue WP; Pérez-Andújar A
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35613603
    [No Abstract]   [Full Text] [Related]  

  • 6. Study of the secondary neutral radiation in proton therapy: toward an indirect in vivo dosimetry.
    Carnicer A; Letellier V; Rucka G; Angellier G; Sauerwein W; Herault J
    Med Phys; 2012 Dec; 39(12):7303-16. PubMed ID: 23231280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scattered neutron dose equivalent from an active scanning proton beam delivery system.
    Hecksel D; Sandison GA; Farr JB; Edwards AC
    Australas Phys Eng Sci Med; 2007 Dec; 30(4):326-30. PubMed ID: 18274074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations.
    Farah J; Martinetti F; Sayah R; Lacoste V; Donadille L; Trompier F; Nauraye C; De Marzi L; Vabre I; Delacroix S; Hérault J; Clairand I
    Phys Med Biol; 2014 Jun; 59(11):2747-65. PubMed ID: 24800943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of whole-body phantom designs to estimate organ equivalent neutron doses for secondary cancer risk assessment in proton therapy.
    Moteabbed M; Geyer A; Drenkhahn R; Bolch WE; Paganetti H
    Phys Med Biol; 2012 Jan; 57(2):499-515. PubMed ID: 22217682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms.
    Zacharatou Jarlskog C; Lee C; Bolch WE; Xu XG; Paganetti H
    Phys Med Biol; 2008 Feb; 53(3):693-717. PubMed ID: 18199910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of neutron dose equivalent and its dependence on beam configuration for a passive scattering proton delivery system.
    Wang X; Sahoo N; Zhu RX; Zullo JR; Gillin MT
    Int J Radiat Oncol Biol Phys; 2010 Apr; 76(5):1563-70. PubMed ID: 20097484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy.
    Pérez-Andújar A; Zhang R; Newhauser W
    Med Phys; 2013 Dec; 40(12):121714. PubMed ID: 24320500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pitfalls of tungsten multileaf collimator in proton beam therapy.
    Moskvin V; Cheng CW; Das IJ
    Med Phys; 2011 Dec; 38(12):6395-406. PubMed ID: 22149823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculations of neutron dose equivalent exposures from range-modulated proton therapy beams.
    Polf JC; Newhauser WD
    Phys Med Biol; 2005 Aug; 50(16):3859-73. PubMed ID: 16077232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams.
    Zheng Y; Liu Y; Zeidan O; Schreuder AN; Keole S
    Med Phys; 2012 Jun; 39(6):3484-92. PubMed ID: 22755728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother.
    Mesoloras G; Sandison GA; Stewart RD; Farr JB; Hsi WC
    Med Phys; 2006 Jul; 33(7):2479-90. PubMed ID: 16898451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy.
    Islam MR; Collums TL; Zheng Y; Monson J; Benton ER
    Phys Med Biol; 2013 Nov; 58(22):8235-51. PubMed ID: 24201018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy.
    Trinkl S; Mares V; Englbrecht FS; Wilkens JJ; Wielunski M; Parodi K; Rühm W; Hillbrand M
    Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems.
    Farah J; Mares V; Romero-Expósito M; Trinkl S; Domingo C; Dufek V; Klodowska M; Kubancak J; Knežević Ž; Liszka M; Majer M; Miljanić S; Ploc O; Schinner K; Stolarczyk L; Trompier F; Wielunski M; Olko P; Harrison RM
    Med Phys; 2015 May; 42(5):2572-84. PubMed ID: 25979049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.