These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 1818321)

  • 1. [The use of bead cellulose for controlled drug liberation. 3. The ion exchange capacity of bead cellulose and bead cellulose derivatives].
    Wolf B; Finke I
    Pharmazie; 1991 Dec; 46(12):861-3. PubMed ID: 1818321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The use of bead cellulose for controlled drug liberation. 4. Binding of bead cellulose and bead cellulose-derivatives with prazosin hydrochloride and its liberation].
    Wolf B; Finke I
    Pharmazie; 1992 Jan; 47(1):35-8. PubMed ID: 1608982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The use of bead cellulose for controlled drug liberation. 5. Binding of benzocaine as a model drug to dialdehyde-bead cellulose and its in vitro liberation].
    Wolf B; Finke I
    Pharmazie; 1992 Feb; 47(2):121-5. PubMed ID: 1635919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The use of bead cellulose for controlled drug liberation. 5. Kinetics of liberation of bonded drugs from bead cellulose and bead cellulose derivatives].
    Wolf B
    Pharmazie; 1992 Mar; 47(3):204-7. PubMed ID: 1615025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cellulose derivatives on alginate microspheres prepared by emulsification.
    Chan LW; Heng PW; Wan LS
    J Microencapsul; 1997; 14(5):545-55. PubMed ID: 9292431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topochemical Engineering of Cellulose-Carboxymethyl Cellulose Beads: A Low-Field NMR Relaxometry Study.
    De Wever P; de Oliveira-Silva R; Marreiros J; Ameloot R; Sakellariou D; Fardim P
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33375128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophilic-lipophilic drug carrier systems of bead cellulose and isopropyl myristate.
    Wolf B
    Drug Dev Ind Pharm; 1998 Nov; 24(11):1007-15. PubMed ID: 9876555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of superporous cellulose bead for high-speed protein chromatography.
    Wang DM; Hao G; Shi QH; Sun Y
    J Chromatogr A; 2007 Mar; 1146(1):32-40. PubMed ID: 17300793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability improvement of carboxymethyl cellulose/chitosan complex beads by thermal treatment.
    Altam AA; Zhu L; Wang W; Yagoub H; Yang S
    Int J Biol Macromol; 2022 Dec; 223(Pt A):1278-1286. PubMed ID: 36379283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thixotropy of different concentrations of microcrystalline cellulose:sodium carboxymethyl cellulose gels.
    Dolz-Planas M; Roldan-Garcia C; Herraez-Dominguez JV; Belda-Maximino R
    J Pharm Sci; 1991 Jan; 80(1):75-9. PubMed ID: 2013855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An intelligent multicompartmental system based on thermo-sensitive starch microspheres for temperature-controlled release of drugs.
    Fundueanu G; Constantin M; Ascenzi P; Simionescu BC
    Biomed Microdevices; 2010 Aug; 12(4):693-704. PubMed ID: 20414809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications.
    Luo X; Zhang L
    J Chromatogr A; 2010 Sep; 1217(38):5922-9. PubMed ID: 20723904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The preparation and properties of ficin chemically attached to carboxymethylcellulose.
    Hornby WE; Lilly MD; Crook EM
    Biochem J; 1966 Feb; 98(2):420-5. PubMed ID: 5941337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid.
    Angadi SC; Manjeshwar LS; Aminabhavi TM
    Int J Biol Macromol; 2010 Aug; 47(2):171-9. PubMed ID: 20471411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of binding materials and pressure compression on the properties of granulates and tablets prepared by traditional methods and by the fluidization-spray method. II. Binding material: sodium carboxymethyl cellulose].
    Kovács B; Gyarmathy M; Gyarmati L
    Acta Pharm Hung; 1977 Nov; 47(6):266-72. PubMed ID: 610345
    [No Abstract]   [Full Text] [Related]  

  • 16. A tosyl-activated magnetic bead cellulose as solid support for sensitive protein detection.
    Yan J; Horák D; Lenfeld J; Hammond M; Kamali-Moghaddam M
    J Biotechnol; 2013 Sep; 167(3):235-40. PubMed ID: 23811391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach to encapsulating nonsteroidal anti-inflammatory drugs. III. Coating acidic as well as basic nonsteroidal anti-inflammatory drugs with cellulose derivatives having different functional groups.
    Meshali MM; el-Dien EZ; Omar SA; Luzzi LA
    J Microencapsul; 1989; 6(3):339-53. PubMed ID: 2569510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Modification of alpha-chymotrypsin by soluble carboxymethyl cellulose and sorption immobilization of CMC-chymotrypsin].
    Kinstler OB; Kozlov LV
    Biokhimiia; 1977 Sep; 42(9):1674-81. PubMed ID: 21001
    [No Abstract]   [Full Text] [Related]  

  • 19. Thixotropic behavior of a microcrystalline cellulose-sodium carboxymethylcellulose gel.
    Dolz-Planas M; González-Rodriguez F; Belda-Maximino R; Herraez-Dominguez JV
    J Pharm Sci; 1988 Sep; 77(9):799-801. PubMed ID: 3225776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spray-dried nanofibrillar cellulose microparticles for sustained drug release.
    Kolakovic R; Laaksonen T; Peltonen L; Laukkanen A; Hirvonen J
    Int J Pharm; 2012 Jul; 430(1-2):47-55. PubMed ID: 22465549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.