These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18183898)

  • 21. Spatial knowledge of a real school environment acquired from virtual or physical models by able-bodied children and children with physical disabilities.
    Foreman N; Stanton D; Wilson P; Duffy H
    J Exp Psychol Appl; 2003 Jun; 9(2):67-74. PubMed ID: 12877267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploration of virtual mazes by rhesus monkeys (Macaca mulatta).
    Washburn DA; Astur RS
    Anim Cogn; 2003 Sep; 6(3):161-8. PubMed ID: 12750961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immersive Virtual Environment Technology to Supplement Environmental Perception, Preference and Behavior Research: A Review with Applications.
    Smith JW
    Int J Environ Res Public Health; 2015 Sep; 12(9):11486-505. PubMed ID: 26378565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Moving through virtual reality without moving?
    Riecke BE; Sigurdarson S; Milne AP
    Cogn Process; 2012 Aug; 13 Suppl 1():S293-7. PubMed ID: 22806672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial cognition in a virtual reality home-cage extension for freely moving rodents.
    Kaupert U; Thurley K; Frei K; Bagorda F; Schatz A; Tocker G; Rapoport S; Derdikman D; Winter Y
    J Neurophysiol; 2017 Apr; 117(4):1736-1748. PubMed ID: 28077665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contributions of proprioception to navigation in virtual environments.
    Grant SC; Magee LE
    Hum Factors; 1998 Sep; 40(3):489-97. PubMed ID: 9849106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing physiological responses during cognitive tests in virtual environments vs. in identical real-world environments.
    Kalantari S; Rounds JD; Kan J; Tripathi V; Cruz-Garza JG
    Sci Rep; 2021 May; 11(1):10227. PubMed ID: 33986337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Action-perception patterns in virtual ball bouncing: combating system latency and tracking functional validity.
    Morice AH; Siegler IA; Bardy BG
    J Neurosci Methods; 2008 Mar; 169(1):255-66. PubMed ID: 18221787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous neural and movement recording in large-scale immersive virtual environments.
    Snider J; Plank M; Lee D; Poizner H
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):713-21. PubMed ID: 24232632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards photorealistic and immersive virtual-reality environments for simulated prosthetic vision: integrating recent breakthroughs in consumer hardware and software.
    Zapf MP; Matteucci PB; Lovell NH; Zheng S; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2597-600. PubMed ID: 25570522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Building virtual reality fMRI paradigms: a framework for presenting immersive virtual environments.
    Mueller C; Luehrs M; Baecke S; Adolf D; Luetzkendorf R; Luchtmann M; Bernarding J
    J Neurosci Methods; 2012 Aug; 209(2):290-8. PubMed ID: 22759716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gender differences in navigating virtual worlds.
    Sakthivel M; Patterson PE; Cruz-Neira C
    Biomed Sci Instrum; 1999; 35():353-9. PubMed ID: 11143377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Geometric calibration of head-mounted displays and its effects on distance estimation.
    Kellner F; Bolte B; Bruder G; Rautenberg U; Steinicke F; Lappe M; Koch R
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):589-96. PubMed ID: 22402686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transfer of route learning from virtual to real environments.
    Farrell MJ; Arnold P; Pettifer S; Adams J; Graham T; MacManamon M
    J Exp Psychol Appl; 2003 Dec; 9(4):219-27. PubMed ID: 14664673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Navigating through virtual environments: visual realism improves spatial cognition.
    Meijer F; Geudeke BL; van den Broek EL
    Cyberpsychol Behav; 2009 Oct; 12(5):517-21. PubMed ID: 19619040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Walking through a virtual environment improves perceived size within and beyond the walked space.
    Siegel ZD; Kelly JW
    Atten Percept Psychophys; 2017 Jan; 79(1):39-44. PubMed ID: 27914094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using virtual worlds as a platform for collaborative meetings in healthcare: a feasibility study.
    Taylor MJ; Shikaislami C; McNicholas C; Taylor D; Reed J; Vlaev I
    BMC Health Serv Res; 2020 May; 20(1):442. PubMed ID: 32429971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interpersonal distance in immersive virtual environments.
    Bailenson JN; Blascovich J; Beall AC; Loomis JM
    Pers Soc Psychol Bull; 2003 Jul; 29(7):819-33. PubMed ID: 15018671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.