BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18184016)

  • 1. Global amine and acid functional group modification of proteins.
    Krusemark CJ; Ferguson JT; Wenger CD; Kelleher NL; Belshaw PJ
    Anal Chem; 2008 Feb; 80(3):713-20. PubMed ID: 18184016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete chemical modification of amine and acid functional groups of peptides and small proteins.
    Krusemark CJ; Frey BL; Smith LM; Belshaw PJ
    Methods Mol Biol; 2011; 753():77-91. PubMed ID: 21604117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-catalyzed Huisgen and oxidative Huisgen coupling reactions controlled by polysiloxane-supported amines (AFPs) for the divergent synthesis of triazoles and bistriazoles.
    Zheng ZJ; Ye F; Zheng LS; Yang KF; Lai GQ; Xu LW
    Chemistry; 2012 Oct; 18(44):14094-9. PubMed ID: 23018981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomolecular assemblies combining two orthogonal copper-mediated ligations in a one-pot reaction.
    Grassin A; Claron M; Boturyn D
    Chemistry; 2015 Apr; 21(16):6022-6. PubMed ID: 25801963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA-Protein Cross-Linking.
    Dadová J; Vrábel M; Adámik M; Brázdová M; Pohl R; Fojta M; Hocek M
    Chemistry; 2015 Nov; 21(45):16091-102. PubMed ID: 26377361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosylated N-sulfonylamidines: highly efficient copper-catalyzed multicomponent reaction with sugar alkynes, sulfonyl azides, and amines.
    Mandal S; Gauniyal HM; Pramanik K; Mukhopadhyay B
    J Org Chem; 2007 Dec; 72(25):9753-6. PubMed ID: 17985923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG
    Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyridine synthesis by reactions of allyl amines and alkynes proceeding through a Cu(OAc)2 oxidation and Rh(III)-catalyzed N-annulation sequence.
    Kim DS; Park JW; Jun CH
    Chem Commun (Camb); 2012 Nov; 48(92):11334-6. PubMed ID: 23069867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide macrocyclisation
    Bell HJ; Malins LR
    Org Biomol Chem; 2022 Aug; 20(31):6250-6256. PubMed ID: 35621075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed CuAAC Suzuki-Miyaura Labeling for Tandem Activity-Based Chemoproteomic Profiling.
    Cao J; Boatner LM; Desai HS; Burton NR; Armenta E; Chan NJ; Castellón JO; Backus KM
    Anal Chem; 2021 Feb; 93(4):2610-2618. PubMed ID: 33470097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of Protein Scaffolds via Copper-Catalyzed Azide-Alkyne Cycloaddition.
    Presolski S
    Methods Mol Biol; 2018; 1798():187-193. PubMed ID: 29868960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoration of Coiled-Coil Peptides with N-Cysteine Peptide Thioesters As Cyclic Peptide Precursors Using Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) Click Reaction.
    Rink WM; Thomas F
    Org Lett; 2018 Dec; 20(23):7493-7497. PubMed ID: 30407016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies on the Cu-catalyzed three-component reactions of sulfonyl azides, 1-alkynes and amines, alcohols, or water: dichotomy via a common pathway.
    Yoo EJ; Ahlquist M; Bae I; Sharpless KB; Fokin VV; Chang S
    J Org Chem; 2008 Jul; 73(14):5520-8. PubMed ID: 18557650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibody functionalization with a dual reactive hydrazide/click crosslinker.
    Le HT; Jang JG; Park JY; Lim CW; Kim TW
    Anal Biochem; 2013 Apr; 435(1):68-73. PubMed ID: 23313755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring and Suppressing the Oxidative Damage to DNA During Cu(I)-Catalyzed Azide-Alkyne Cycloaddition.
    Abel GR; Calabrese ZA; Ayco J; Hein JE; Ye T
    Bioconjug Chem; 2016 Mar; 27(3):698-704. PubMed ID: 26829457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the selectivity of DIFO-based reagents for intracellular bioorthogonal applications.
    Kim EJ; Kang DW; Leucke HF; Bond MR; Ghosh S; Love DC; Ahn JS; Kang DO; Hanover JA
    Carbohydr Res; 2013 Aug; 377():18-27. PubMed ID: 23770695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave-assisted or Cu-NHC-catalyzed cycloaddition of azido-disubstituted alkynes: bifurcation of reaction pathways.
    Xia Y; Chen LY; Lv S; Sun Z; Wang B
    J Org Chem; 2014 Oct; 79(20):9818-25. PubMed ID: 25268332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC).
    Mandoli A
    Molecules; 2016 Sep; 21(9):. PubMed ID: 27607998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.