These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 18184780)
41. Kindling alters neurosteroid-induced modulation of phasic and tonic GABAA receptor-mediated currents: role of phosphorylation. Kia A; Ribeiro F; Nelson R; Gavrilovici C; Ferguson SS; Poulter MO J Neurochem; 2011 Mar; 116(6):1043-56. PubMed ID: 21175618 [TBL] [Abstract][Full Text] [Related]
42. D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. Flores-Hernandez J; Hernandez S; Snyder GL; Yan Z; Fienberg AA; Moss SJ; Greengard P; Surmeier DJ J Neurophysiol; 2000 May; 83(5):2996-3004. PubMed ID: 10805695 [TBL] [Abstract][Full Text] [Related]
43. Effect of acute soman exposure on GABA(A) receptors in rat hippocampal slices and cultured hippocampal neurons. Wang Y; Liu L; Weiss T; Stewart C; Mikler J Neurotox Res; 2011 Nov; 20(4):343-50. PubMed ID: 21643853 [TBL] [Abstract][Full Text] [Related]
44. Specific subtypes of GABAA receptors mediate phasic and tonic forms of inhibition in hippocampal pyramidal neurons. Prenosil GA; Schneider Gasser EM; Rudolph U; Keist R; Fritschy JM; Vogt KE J Neurophysiol; 2006 Aug; 96(2):846-57. PubMed ID: 16835366 [TBL] [Abstract][Full Text] [Related]
45. Cyclic AMP-dependent protein kinase A and protein kinase C phosphorylate alpha4beta2 nicotinic receptor subunits at distinct stages of receptor formation and maturation. Pollock VV; Pastoor T; Katnik C; Cuevas J; Wecker L Neuroscience; 2009 Feb; 158(4):1311-25. PubMed ID: 19101612 [TBL] [Abstract][Full Text] [Related]
46. GABAA receptor-associated phosphoinositide 3-kinase is required for insulin-induced recruitment of postsynaptic GABAA receptors. Vetiska SM; Ahmadian G; Ju W; Liu L; Wymann MP; Wang YT Neuropharmacology; 2007 Jan; 52(1):146-55. PubMed ID: 16890252 [TBL] [Abstract][Full Text] [Related]
47. Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics. Bannai H; Lévi S; Schweizer C; Inoue T; Launey T; Racine V; Sibarita JB; Mikoshiba K; Triller A Neuron; 2009 Jun; 62(5):670-82. PubMed ID: 19524526 [TBL] [Abstract][Full Text] [Related]
48. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Nakajima K; Yin X; Takei Y; Seog DH; Homma N; Hirokawa N Neuron; 2012 Dec; 76(5):945-61. PubMed ID: 23217743 [TBL] [Abstract][Full Text] [Related]
49. Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. Naylor DE; Liu H; Wasterlain CG J Neurosci; 2005 Aug; 25(34):7724-33. PubMed ID: 16120773 [TBL] [Abstract][Full Text] [Related]
50. Altered expression of GABA(A) and GABA(B) receptor subunit mRNAs in the hippocampus after kindling and electrically induced status epilepticus. Nishimura T; Schwarzer C; Gasser E; Kato N; Vezzani A; Sperk G Neuroscience; 2005; 134(2):691-704. PubMed ID: 15951123 [TBL] [Abstract][Full Text] [Related]
51. Dopamine D3 receptors regulate GABAA receptor function through a phospho-dependent endocytosis mechanism in nucleus accumbens. Chen G; Kittler JT; Moss SJ; Yan Z J Neurosci; 2006 Mar; 26(9):2513-21. PubMed ID: 16510729 [TBL] [Abstract][Full Text] [Related]
57. Tyrosine phosphorylation regulates the membrane trafficking of the potassium chloride co-transporter KCC2. Lee HH; Jurd R; Moss SJ Mol Cell Neurosci; 2010 Oct; 45(2):173-9. PubMed ID: 20600929 [TBL] [Abstract][Full Text] [Related]
58. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. Kobayashi M; Buckmaster PS J Neurosci; 2003 Mar; 23(6):2440-52. PubMed ID: 12657704 [TBL] [Abstract][Full Text] [Related]
59. Extrasynaptic GABA(A) receptors couple presynaptic activity to postsynaptic inhibition in the somatosensory thalamus. Herd MB; Brown AR; Lambert JJ; Belelli D J Neurosci; 2013 Sep; 33(37):14850-68. PubMed ID: 24027285 [TBL] [Abstract][Full Text] [Related]
60. Serine/threonine protein phosphatases and synaptic inhibition regulate the expression of cholinergic-dependent plateau potentials. Fraser DD; Doll D; MacVicar BA J Neurophysiol; 2001 Mar; 85(3):1197-205. PubMed ID: 11247989 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]