BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 18185009)

  • 1. Curvature-driven lateral segregation of membrane constituents in Golgi cisternae.
    Derganc J
    Phys Biol; 2007 Nov; 4(4):317-24. PubMed ID: 18185009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical factors that affect the number and size of Golgi cisternae.
    Derganc J; Mironov AA; Svetina S
    Traffic; 2006 Jan; 7(1):85-96. PubMed ID: 16445689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling between vesicle shape and the non-homogeneous lateral distribution of membrane constituents in Golgi bodies.
    Iglic A; Fosnaric M; Hägerstrand H; Kralj-Iglic V
    FEBS Lett; 2004 Sep; 574(1-3):9-12. PubMed ID: 15358531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of anisotropic membrane inclusions on curvature elastic properties of lipid membranes.
    Fosnaric M; Bohinc K; Gauger DR; Iglic A; Kralj-Iglic V; May S
    J Chem Inf Model; 2005; 45(6):1652-61. PubMed ID: 16309269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model.
    Shemesh T; Luini A; Malhotra V; Burger KN; Kozlov MM
    Biophys J; 2003 Dec; 85(6):3813-27. PubMed ID: 14645071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical stability of membrane nanotubular protrusions influenced by attachment of flexible rod-like proteins.
    Perutková S; Kralj-Iglic V; Frank M; Iglic A
    J Biomech; 2010 May; 43(8):1612-7. PubMed ID: 20185134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of anisotropy of membrane constituents in formation of a membrane neck during budding of a multicomponent membrane.
    Iglic A; Babnik B; Bohinc K; Fosnaric M; Hägerstrand H; Kralj-Iglic V
    J Biomech; 2007; 40(3):579-85. PubMed ID: 16584736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions.
    Reynwar BJ; Illya G; Harmandaris VA; Müller MM; Kremer K; Deserno M
    Nature; 2007 May; 447(7143):461-4. PubMed ID: 17522680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Membrane organization in the plane of the layer and cell shape. Statistical approach].
    Markin VS
    Biofizika; 1980; 25(5):941-52. PubMed ID: 7417587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of the effective bending moduli of a fluid membrane: free-energy cost due to the reference-plane deformations.
    Nishiyama Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031901. PubMed ID: 14524797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of transport through the Golgi complex.
    Jackson CL
    J Cell Sci; 2009 Feb; 122(Pt 4):443-52. PubMed ID: 19193869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Budding and domain shape transformations in mixed lipid films and bilayer membranes.
    Harden JL; Mackintosh FC; Olmsted PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011903. PubMed ID: 16089997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses.
    Malinin VS; Lentz BR
    Biophys J; 2004 May; 86(5):2951-64. PubMed ID: 15111411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Travelling lipid domains in a dynamic model for protein-induced pattern formation in biomembranes.
    John K; Bär M
    Phys Biol; 2005 Jun; 2(2):123-32. PubMed ID: 16204864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations.
    Risselada HJ; Marrink SJ
    Phys Chem Chem Phys; 2009 Mar; 11(12):2056-67. PubMed ID: 19280016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the spontaneous curvature and bending rigidity of lipid membranes by interfacially adsorbed amphipathic peptides.
    Zemel A; Ben-Shaul A; May S
    J Phys Chem B; 2008 Jun; 112(23):6988-96. PubMed ID: 18479112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid elastic and discrete-particle approach to biomembrane dynamics with application to the mobility of curved integral membrane proteins.
    Naji A; Atzberger PJ; Brown FL
    Phys Rev Lett; 2009 Apr; 102(13):138102. PubMed ID: 19392406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical regulation of lipid biosynthesis in the plasma membrane.
    Alley SH; Ces O; Templer RH; Barahona M
    Biophys J; 2008 Apr; 94(8):2938-54. PubMed ID: 18192365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling between vesicle shape and lateral distribution of mobile membrane inclusions.
    Bozic B; Kralj-Iglic V; Svetina S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041915. PubMed ID: 16711844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling tubular shapes in the inner mitochondrial membrane.
    Ponnuswamy A; Nulton J; Mahaffy JM; Salamon P; Frey TG; Baljon AR
    Phys Biol; 2005 Mar; 2(1):73-9. PubMed ID: 16204859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.