BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

931 related articles for article (PubMed ID: 18185100)

  • 1. Transient and sustained brain activity during anticipatory visuospatial attention.
    Luks TL; Sun FT; Dale CL; Miller WL; Simpson GV
    Neuroreport; 2008 Jan; 19(2):155-9. PubMed ID: 18185100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study.
    Caplan JB; Luks TL; Simpson GV; Glaholt M; McIntosh AR
    Neuroimage; 2006 Feb; 29(4):1192-202. PubMed ID: 16236528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visuospatial attention: how to measure effects of infrequent, unattended events in a blocked stimulus design.
    Giessing C; Thiel CM; Stephan KE; Rösler F; Fink GR
    Neuroimage; 2004 Dec; 23(4):1370-81. PubMed ID: 15589101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Right temporal-parietal junction engagement during spatial reorienting does not depend on strategic attention control.
    Natale E; Marzi CA; Macaluso E
    Neuropsychologia; 2010 Mar; 48(4):1160-4. PubMed ID: 19932706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of visuospatial cues in response selection.
    van Eimeren T; Wolbers T; Münchau A; Büchel C; Weiller C; Siebner HR
    Neuroimage; 2006 Jan; 29(1):286-94. PubMed ID: 16087350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional parcellation of attentional control regions of the brain.
    Woldorff MG; Hazlett CJ; Fichtenholtz HM; Weissman DH; Dale AM; Song AW
    J Cogn Neurosci; 2004; 16(1):149-65. PubMed ID: 15006044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method.
    Li L; Yao D; Yin G
    Brain Res; 2009 Jul; 1282():84-94. PubMed ID: 19501069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model.
    Hsieh L; Young RA; Bowyer SM; Moran JE; Genik RJ; Green CC; Chiang YR; Yu YJ; Liao CC; Seaman S
    Brain Res; 2009 Jan; 1251():162-75. PubMed ID: 18952070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of target and effector information in the human brain during reach planning.
    Beurze SM; de Lange FP; Toni I; Medendorp WP
    J Neurophysiol; 2007 Jan; 97(1):188-99. PubMed ID: 16928798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional MRI study of preparatory signals for spatial location and objects.
    Corbetta M; Tansy AP; Stanley CM; Astafiev SV; Snyder AZ; Shulman GL
    Neuropsychologia; 2005; 43(14):2041-56. PubMed ID: 16243051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and slow parietal pathways mediate spatial attention.
    Chambers CD; Payne JM; Stokes MG; Mattingley JB
    Nat Neurosci; 2004 Mar; 7(3):217-8. PubMed ID: 14983182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominance of the left oblique view in activating the cortical network for face recognition.
    Kowatari Y; Yamamoto M; Takahashi T; Kansaku K; Kitazawa S; Ueno S; Yamane S
    Neurosci Res; 2004 Dec; 50(4):475-80. PubMed ID: 15567485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.