These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 1818536)
21. Comparative analysis of laccase-isozymes patterns of several related Polyporaceae species under different culture conditions. Arana-Cuenca A; Roda A; Téllez A; Loera O; Carbajo JM; Terrón MC; González AE J Basic Microbiol; 2004; 44(2):79-87. PubMed ID: 15069666 [TBL] [Abstract][Full Text] [Related]
22. Studies on the decomposition of lignosulfonates by the fungi Pleurotus ostreatus and Trametes pubescens. Wojtaś-Wasilewska M; Trojanowski J Acta Microbiol Pol B; 1975; 7(2):77-90. PubMed ID: 1172650 [TBL] [Abstract][Full Text] [Related]
23. Influence of enzymes and technology on virgin olive oil composition. Peres F; Martins LL; Ferreira-Dias S Crit Rev Food Sci Nutr; 2017 Sep; 57(14):3104-3126. PubMed ID: 26466636 [TBL] [Abstract][Full Text] [Related]
24. Effect of aerobic pretreatment with Aspergillus terreus on the anaerobic digestion of olive-mill wastewater. Borja R; Alba J; Garrido SE; Martínez L; García MP; Monteoliva M; Ramos-Cormenzana A Biotechnol Appl Biochem; 1995 Oct; 22(2):233-46. PubMed ID: 7576261 [TBL] [Abstract][Full Text] [Related]
25. Electrochemical treatment of olive oil mill wastewater. Longhi P; Vodopivec B; Fiori G Ann Chim; 2001; 91(3-4):169-74. PubMed ID: 11381541 [TBL] [Abstract][Full Text] [Related]
26. Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation. Justino CI; Duarte K; Loureiro F; Pereira R; Antunes SC; Marques SM; Gonçalves F; Rocha-Santos TA; Freitas AC J Hazard Mater; 2009 Dec; 172(2-3):1560-72. PubMed ID: 19740604 [TBL] [Abstract][Full Text] [Related]
27. Removal of monomeric phenols in dry mill olive residue by saprobic fungi. Sampedro I; Romero C; Ocampo JA; Brenes M; García I J Agric Food Chem; 2004 Jul; 52(14):4487-92. PubMed ID: 15237956 [TBL] [Abstract][Full Text] [Related]
28. Dependence of fatty-acid composition of edible oils on their enrichment in olive phenols. Girón MV; Ruiz-Jiménez J; Luque de Castro MD J Agric Food Chem; 2009 Apr; 57(7):2797-802. PubMed ID: 19253972 [TBL] [Abstract][Full Text] [Related]
29. An effective HPLC-based approach for the evaluation of the content of total phenolic compounds transferred from olives to virgin olive oil during the olive milling process. Cecchi L; Migliorini M; Zanoni B; Breschi C; Mulinacci N J Sci Food Agric; 2018 Aug; 98(10):3636-3643. PubMed ID: 29250777 [TBL] [Abstract][Full Text] [Related]
30. Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Owen RW; Mier W; Giacosa A; Hull WE; Spiegelhalder B; Bartsch H Food Chem Toxicol; 2000 Aug; 38(8):647-59. PubMed ID: 10908812 [TBL] [Abstract][Full Text] [Related]
31. Development of a phenol-enriched olive oil with phenolic compounds from olive cake. Suárez M; Romero MP; Motilva MJ J Agric Food Chem; 2010 Oct; 58(19):10396-403. PubMed ID: 20828151 [TBL] [Abstract][Full Text] [Related]
32. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. Papanikolaou S; Dimou A; Fakas S; Diamantopoulou P; Philippoussis A; Galiotou-Panayotou M; Aggelis G J Appl Microbiol; 2011 May; 110(5):1138-50. PubMed ID: 21281409 [TBL] [Abstract][Full Text] [Related]
33. Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Morillo JA; Aguilera M; Ramos-Cormenzana A; Monteoliva-Sánchez M Curr Microbiol; 2006 Sep; 53(3):189-93. PubMed ID: 16874549 [TBL] [Abstract][Full Text] [Related]
34. Biodegradation of olive mill wastewater by Trichosporon cutaneum and Geotrichum candidum. Sollner Dragičević TL; Zanoški Hren M; Gmajnić M; Pelko S; Kungulovski D; Kungulovski I; Cvek D; Frece J; Markov K; Delaš F Arh Hig Rada Toksikol; 2010 Dec; 61(4):399-405. PubMed ID: 21183431 [TBL] [Abstract][Full Text] [Related]
35. Role of olive oil phenolics in physical properties and stability of mayonnaise-like emulsions. Giacintucci V; Di Mattia C; Sacchetti G; Neri L; Pittia P Food Chem; 2016 Dec; 213():369-377. PubMed ID: 27451193 [TBL] [Abstract][Full Text] [Related]
36. Chlorophylls in olive and in olive oil: chemistry and occurrences. Giuliani A; Cerretani L; Cichelli A Crit Rev Food Sci Nutr; 2011 Aug; 51(7):678-90. PubMed ID: 21793727 [TBL] [Abstract][Full Text] [Related]
37. Phenolic compounds in olive oils intended for refining: formation of 4-ethylphenol during olive paste storage. Brenes M; Romero C; García A; Hidalgo FJ; Ruiz-Méndez MV J Agric Food Chem; 2004 Dec; 52(26):8177-81. PubMed ID: 15612814 [TBL] [Abstract][Full Text] [Related]
38. Gas chromatographic-mass spectrometric study of the degradation of phenolic compounds in wastewater olive oil by Azotobacter Chroococcum. Juárez MJ; Zafra-Gómez A; Luzón-Toro B; Ballesteros-García OA; Navalón A; González J; Vílchez JL Bioresour Technol; 2008 May; 99(7):2392-8. PubMed ID: 17624767 [TBL] [Abstract][Full Text] [Related]
39. Pleurotus mushrooms. Part I A. Morphology, life cycle, taxonomy, breeding, and cultivation. Rajarathnam S; Bano Z Crit Rev Food Sci Nutr; 1987; 26(2):157-223. PubMed ID: 3322683 [TBL] [Abstract][Full Text] [Related]
40. Biochemical and molecular characterization of Coriolopsis rigida laccases involved in transformation of the solid waste from olive oil production. Díaz R; Saparrat MC; Jurado M; García-Romera I; Ocampo JA; Martínez MJ Appl Microbiol Biotechnol; 2010 Sep; 88(1):133-42. PubMed ID: 20607234 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]