These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18185672)

  • 1. Observation of a single-beam gradient-force optical trap for dielectric particles in air.
    Omori R; Kobayashi T; Suzuki A
    Opt Lett; 1997 Jun; 22(11):816-8. PubMed ID: 18185672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.
    Ashkin A
    Biophys J; 1992 Feb; 61(2):569-82. PubMed ID: 19431818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Trap Loading of Dielectric Microparticles In Air.
    Park H; LeBrun TW
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28190055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.
    Ashkin A
    Methods Cell Biol; 1998; 55():1-27. PubMed ID: 9352508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman Spectroscopy of Single Light-Absorbing Carbonaceous Particles Levitated in Air Using an Annular Laser Beam.
    Uraoka M; Maegawa K; Ishizaka S
    Anal Chem; 2017 Dec; 89(23):12866-12871. PubMed ID: 29148717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the force constant of a single-beam gradient trap by measurement of backscattered light.
    Friese ME; Rubinsztein-Dunlop H; Heckenberg NR; Dearden EW
    Appl Opt; 1996 Dec; 35(36):7112-6. PubMed ID: 21151316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of asymmetrically dynamic motion of single colloidal particles in a polarized optical trap.
    Xie C; Dinno MA; Li YQ
    Opt Express; 2005 Mar; 13(5):1621-7. PubMed ID: 19495037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing conical refraction optical tweezers.
    McDonald C; McDougall C; Rafailov E; McGloin D
    Opt Lett; 2014 Dec; 39(23):6691-4. PubMed ID: 25490654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical concatenation of a large number of beads with a single-beam optical tweezer.
    Avila R; Ascencio-Rodríguez J; Tapia-Merino D; Rodríguez-Herrera OG; González-Suárez A
    Opt Lett; 2017 Apr; 42(7):1393-1396. PubMed ID: 28362777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical levitation and manipulation of stuck particles with pulsed optical tweezers.
    Ambardekar AA; Li YQ
    Opt Lett; 2005 Jul; 30(14):1797-9. PubMed ID: 16092349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap.
    Power R; Reid JP; Anand S; McGloin D; Almohammedi A; Mistry NS; Hudson AJ
    J Phys Chem A; 2012 Sep; 116(35):8873-84. PubMed ID: 22867108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow.
    Merenda F; Boer G; Rohner J; Delacrétaz G; Salathé RP
    Opt Express; 2006 Feb; 14(4):1685-99. PubMed ID: 19503495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps.
    Schut TC; Hesselink G; de Grooth BG; Greve J
    Cytometry; 1991; 12(6):479-85. PubMed ID: 1764972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical vortex trapping of particles.
    Gahagan KT; Swartzlander GA
    Opt Lett; 1996 Jun; 21(11):827-9. PubMed ID: 19876172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical trapping of small particles using a 1.3-microm compact InGaAsP diode laser.
    Sato S; Ohyumi M; Shibata H; Inaba H; Ogawa Y
    Opt Lett; 1991 Mar; 16(5):282-4. PubMed ID: 19773908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lensing effect of trapped particles in a dual-beam optical trap.
    Grosser S; Fritsch AW; Kiessling TR; Stange R; Käs JA
    Opt Express; 2015 Feb; 23(4):5221-35. PubMed ID: 25836555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam.
    Redding B; Pan YL
    Opt Lett; 2015 Jun; 40(12):2798-801. PubMed ID: 26076265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical trapping of low-refractive-index microfabricated objects using radiation pressure exerted on their inner walls.
    Higurashi E; Ohguchi O; Ukita H
    Opt Lett; 1995 Oct; 20(19):1931-3. PubMed ID: 19862207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-order nonconservative motion of optically trapped nonspherical particles.
    Simpson SH; Hanna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031141. PubMed ID: 21230059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.