These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 18186065)

  • 21. [Intravascular biocompatibility of decellularized xenogenic vascular scaffolds/PHBHHx hybrid material for cardiovascular tissue engineering].
    Wu S; Liu Y; Cui B; Tang Y; Wang Q; Qu X; Chen G
    Sheng Wu Gong Cheng Xue Bao; 2008 Apr; 24(4):610-6. PubMed ID: 18616171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and cell affinity of microtubular orientation-structured PLGA(70/30) blood vessel scaffold.
    Hu X; Shen H; Yang F; Bei J; Wang S
    Biomaterials; 2008 Jul; 29(21):3128-36. PubMed ID: 18439673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The expression of cross-linked elastin by rabbit blood vessel smooth muscle cells cultured in polyhydroxyalkanoate scaffolds.
    Cheng ST; Chen ZF; Chen GQ
    Biomaterials; 2008 Nov; 29(31):4187-94. PubMed ID: 18684501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M; Wu BM; Dunn JC
    J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gelatin blending improves the performance of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films for biomedical application.
    Wang YW; Wu Q; Chen GQ
    Biomacromolecules; 2005; 6(2):566-71. PubMed ID: 15762614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Fermentative production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by recombinant Aeromonas hydrophila 4AK4 (pTG01)].
    Ouyang SP; Qiu YZ; Wu Q; Chen GQ
    Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):709-14. PubMed ID: 15971584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered Aeromonas hydrophila for enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with alterable monomers composition.
    Han J; Qiu YZ; Liu DC; Chen GQ
    FEMS Microbiol Lett; 2004 Oct; 239(1):195-201. PubMed ID: 15451119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The application of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model.
    Webb WR; Dale TP; Lomas AJ; Zeng G; Wimpenny I; El Haj AJ; Forsyth NR; Chen GQ
    Biomaterials; 2013 Sep; 34(28):6683-94. PubMed ID: 23768899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of Aeromonas hydrophila for the enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
    Qiu YZ; Han J; Chen GQ
    Appl Microbiol Biotechnol; 2006 Jan; 69(5):537-42. PubMed ID: 15983806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced insulin production from murine islet beta cells incubated on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
    Yang XD; Li HM; Chen M; Zou XH; Zhu LY; Wei CJ; Chen GQ
    J Biomed Mater Res A; 2010 Feb; 92(2):548-55. PubMed ID: 19235213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of comonomer content on the crystallization kinetics and morphology of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
    Cai H; Qiu Z
    Phys Chem Chem Phys; 2009 Nov; 11(41):9569-77. PubMed ID: 19830343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smooth muscle alpha-actin and calponin expression and extracellular matrix production of human coronary artery smooth muscle cells in 3D scaffolds.
    Grenier S; Sandig M; Mequanint K
    Tissue Eng Part A; 2009 Oct; 15(10):3001-11. PubMed ID: 19323608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compressed collagen gel: a novel scaffold for human bladder cells.
    Engelhardt EM; Stegberg E; Brown RA; Hubbell JA; Wurm FM; Adam M; Frey P
    J Tissue Eng Regen Med; 2010 Feb; 4(2):123-30. PubMed ID: 19842107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulating the activities of human mesenchymal stem cells (hMSCs) and C3A/HepG2 hepatoma cells by modifying the surface characteristics of poly(3-hydroxybutyrate-co-3-hydroxyhexnoate) (PHBHHx).
    Yu BY; Hu SW; Sun YM; Lee YT; Young TH
    J Biomater Sci Polym Ed; 2009; 20(9):1275-93. PubMed ID: 19520012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uracil as nucleating agent for bacterial poly[(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)] copolymers.
    Pan P; Liang Z; Nakamura N; Miyagawa T; Inoue Y
    Macromol Biosci; 2009 Jun; 9(6):585-95. PubMed ID: 19156688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Experimental studies on canine bladder smooth muscle cells cultured on acellular small intestinal submucosa in vitro].
    Han P; Yang Z; Zhi W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1366-70. PubMed ID: 18277686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Siliceous mesostructured cellular foams/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite biomaterials for bone regeneration.
    Yang S; Xu S; Zhou P; Wang J; Tan H; Liu Y; Tang T; Liu C
    Int J Nanomedicine; 2014; 9():4795-807. PubMed ID: 25364243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Synthesis of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila WQ and its molecular basis].
    Gan Z; Zhang G; Mo X; Chen G; Wu Q
    Wei Sheng Wu Xue Bao; 2003 Dec; 43(6):809-12. PubMed ID: 16276907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering microporosity in bacterial cellulose scaffolds.
    Bäckdahl H; Esguerra M; Delbro D; Risberg B; Gatenholm P
    J Tissue Eng Regen Med; 2008 Aug; 2(6):320-30. PubMed ID: 18615821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering.
    Edwards SL; Church JS; Werkmeister JA; Ramshaw JA
    Biomaterials; 2009 Mar; 30(9):1725-31. PubMed ID: 19124155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.