BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18186305)

  • 1. [Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil].
    Ishimaru Y; Nishizawa NK
    Tanpakushitsu Kakusan Koso; 2008 Jan; 53(1):65-71. PubMed ID: 18186305
    [No Abstract]   [Full Text] [Related]  

  • 2. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil.
    Ishimaru Y; Kim S; Tsukamoto T; Oki H; Kobayashi T; Watanabe S; Matsuhashi S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7373-8. PubMed ID: 17449639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil.
    Masuda H; Shimochi E; Hamada T; Senoura T; Kobayashi T; Aung MS; Ishimaru Y; Ogo Y; Nakanishi H; Nishizawa NK
    PLoS One; 2017; 12(3):e0173441. PubMed ID: 28278216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. It's elementary: enhancing Fe3+ reduction improves rice yields.
    Guerinot ML
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7311-2. PubMed ID: 17460040
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.
    Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F
    Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ferric-chelate reductase for iron uptake from soils.
    Robinson NJ; Procter CM; Connolly EL; Guerinot ML
    Nature; 1999 Feb; 397(6721):694-7. PubMed ID: 10067892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.
    Vasconcelos M; Eckert H; Arahana V; Graef G; Grusak MA; Clemente T
    Planta; 2006 Oct; 224(5):1116-28. PubMed ID: 16741749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis.
    Li LY; Cai QY; Yu DS; Guo CH
    Mol Biol Rep; 2011 Aug; 38(6):3605-13. PubMed ID: 21104018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The FRO2 ferric reductase is required for glycine betaine's effect on chilling tolerance in Arabidopsis roots.
    Einset J; Winge P; Bones AM; Connolly EL
    Physiol Plant; 2008 Oct; 134(2):334-41. PubMed ID: 18513375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic behavior of Fe(o,o-EDDHA)-humic substance mixtures in several soil components and in calcareous soils.
    Cerdán M; Alcañiz S; Juárez M; Jordá JD; Bermúdez D
    J Agric Food Chem; 2007 Oct; 55(22):9159-69. PubMed ID: 17915959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice.
    Lee S; An G
    Plant Cell Environ; 2009 Apr; 32(4):408-16. PubMed ID: 19183299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana.
    Wu H; Li L; Du J; Yuan Y; Cheng X; Ling HQ
    Plant Cell Physiol; 2005 Sep; 46(9):1505-14. PubMed ID: 16006655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting new tools for iron bio-fortification of rice.
    Bashir K; Nozoye T; Ishimaru Y; Nakanishi H; Nishizawa NK
    Biotechnol Adv; 2013 Dec; 31(8):1624-33. PubMed ID: 23973806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced levels of nicotianamine promote iron accumulation and tolerance to calcareous soil in soybean.
    Nozoye T; Kim S; Kakei Y; Takahashi M; Nakanishi H; Nishizawa NK
    Biosci Biotechnol Biochem; 2014; 78(10):1677-84. PubMed ID: 25047240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Responses to iron-deficiency stress by graminaceous plants].
    Itai RN; Nishizawa NK
    Tanpakushitsu Kakusan Koso; 2007 May; 52(6 Suppl):606-11. PubMed ID: 17566362
    [No Abstract]   [Full Text] [Related]  

  • 16. CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity.
    Tian Q; Zhang X; Yang A; Wang T; Zhang WH
    Plant Sci; 2016 May; 246():70-79. PubMed ID: 26993237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction.
    Takeda K; Iizuka M; Watanabe T; Nakagawa J; Kawasaki S; Niimura Y
    FEBS J; 2007 Mar; 274(5):1318-27. PubMed ID: 17298443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.
    Pullakhandam R; Nair MK; Kasula S; Kilari S; Thippande TG
    Biochem Biophys Res Commun; 2008 Sep; 374(2):369-72. PubMed ID: 18638448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron content and bioavailability in rice.
    Meng F; Wei Y; Yang X
    J Trace Elem Med Biol; 2005; 18(4):333-8. PubMed ID: 16028495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A ferrireductase fills the gap in the transferrin cycle.
    McKie AT
    Nat Genet; 2005 Nov; 37(11):1159-60. PubMed ID: 16254556
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.