These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 18186607)

  • 1. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds.
    Bhattacharyya S; Guillot S; Dabboue H; Tranchant JF; Salvetat JP
    Biomacromolecules; 2008 Feb; 9(2):505-9. PubMed ID: 18186607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells.
    Lu PL; Lai JY; Ma DH; Hsiue GH
    J Biomater Sci Polym Ed; 2008; 19(1):1-18. PubMed ID: 18177550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration.
    Yeom J; Bhang SH; Kim BS; Seo MS; Hwang EJ; Cho IH; Park JK; Hahn SK
    Bioconjug Chem; 2010 Feb; 21(2):240-7. PubMed ID: 20078098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photopatterned anisotropic swelling of dual-crosslinked hyaluronic acid hydrogels.
    Zawko SA; Suri S; Truong Q; Schmidt CE
    Acta Biomater; 2009 Jan; 5(1):14-22. PubMed ID: 18929518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering.
    Kim J; Kim IS; Cho TH; Kim HC; Yoon SJ; Choi J; Park Y; Sun K; Hwang SJ
    J Biomed Mater Res A; 2010 Dec; 95(3):673-81. PubMed ID: 20725983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications.
    Ji Y; Ghosh K; Li B; Sokolov JC; Clark RA; Rafailovich MH
    Macromol Biosci; 2006 Oct; 6(10):811-7. PubMed ID: 17022092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering.
    Shi X; Hudson JL; Spicer PP; Tour JM; Krishnamoorti R; Mikos AG
    Biomacromolecules; 2006 Jul; 7(7):2237-42. PubMed ID: 16827593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels.
    MacDonald RA; Voge CM; Kariolis M; Stegemann JP
    Acta Biomater; 2008 Nov; 4(6):1583-92. PubMed ID: 18706876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid crystal behavior of single-walled carbon nanotubes dispersed in biological hyaluronic acid solutions.
    Moulton SE; Maugey M; Poulin P; Wallace GG
    J Am Chem Soc; 2007 Aug; 129(30):9452-7. PubMed ID: 17622144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finely dispersed single-walled carbon nanotubes for polysaccharide hydrogels.
    Yan LY; Chen H; Li P; Kim DH; Chan-Park MB
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4610-5. PubMed ID: 22909447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffolds based on hyaluronan and carbon nanotubes gels.
    Arnal-Pastor M; Tallà Ferrer C; Herrero Herrero M; Martínez-Gómez Aldaraví A; Monleón Pradas M; Vallés-Lluch A
    J Biomater Appl; 2016 Oct; 31(4):534-543. PubMed ID: 27075713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds.
    Leach JB; Schmidt CE
    Biomaterials; 2005 Jan; 26(2):125-35. PubMed ID: 15207459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability.
    Sannino A; Madaghiele M; Conversano F; Mele G; Maffezzoli A; Netti PA; Ambrosio L; Nicolais L
    Biomacromolecules; 2004; 5(1):92-6. PubMed ID: 14715013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells.
    Shin J; Choi EJ; Cho JH; Cho AN; Jin Y; Yang K; Song C; Cho SW
    Biomacromolecules; 2017 Oct; 18(10):3060-3072. PubMed ID: 28876908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diels-Alder Click cross-linked hyaluronic acid hydrogels for tissue engineering.
    Nimmo CM; Owen SC; Shoichet MS
    Biomacromolecules; 2011 Mar; 12(3):824-30. PubMed ID: 21314111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds.
    Baier Leach J; Bivens KA; Patrick CW; Schmidt CE
    Biotechnol Bioeng; 2003 Jun; 82(5):578-89. PubMed ID: 12652481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering.
    Sheikholeslam M; Wheeler SD; Duke KG; Marsden M; Pritzker M; Chen P
    Acta Biomater; 2018 Mar; 69():107-119. PubMed ID: 29248638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-binding hydrogels of hyaluronic acid functionalized with beta-cyclodextrin.
    Zawko SA; Truong Q; Schmidt CE
    J Biomed Mater Res A; 2008 Dec; 87(4):1044-52. PubMed ID: 18257063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.