These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 18186624)

  • 1. Thermodynamic scaling of diffusion in supercooled Lennard-Jones liquids.
    Coslovich D; Roland CM
    J Phys Chem B; 2008 Feb; 112(5):1329-32. PubMed ID: 18186624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure-energy correlations and thermodynamic scaling in viscous Lennard-Jones liquids.
    Coslovich D; Roland CM
    J Chem Phys; 2009 Jan; 130(1):014508. PubMed ID: 19140623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic scaling of the viscosity of van der Waals, H-bonded, and ionic liquids.
    Roland CM; Bair S; Casalini R
    J Chem Phys; 2006 Sep; 125(12):124508. PubMed ID: 17014192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density scaling in viscous liquids: from relaxation times to four-point susceptibilities.
    Coslovich D; Roland CM
    J Chem Phys; 2009 Oct; 131(15):151103. PubMed ID: 20568840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the density scaling of liquid dynamics.
    Fragiadakis D; Roland CM
    J Chem Phys; 2011 Jan; 134(4):044504. PubMed ID: 21280745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics study of thermodynamic scaling of the glass-transition dynamics in ionic liquids over wide temperature and pressure ranges.
    Habasaki J; Casalini R; Ngai KL
    J Phys Chem B; 2010 Mar; 114(11):3902-11. PubMed ID: 20184305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comment on: "Disentangling density and temperature effects in the viscous slowing down of glass forming liquids" [J. Chem. Phys. 120, 6135 (2004)].
    Roland CM; Casalini R
    J Chem Phys; 2004 Dec; 121(22):11503-4; author reply 11505-6. PubMed ID: 15634111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moderately and strongly supercooled liquids: a temperature-derivative study of the primary relaxation time scale.
    Kokshenev VB; Borges PD; Sullivan NS
    J Chem Phys; 2005 Mar; 122(11):114510. PubMed ID: 15836232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic interpretation of the scaling of the dynamics of supercooled liquids.
    Casalini R; Mohanty U; Roland CM
    J Chem Phys; 2006 Jul; 125(1):014505. PubMed ID: 16863314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.
    Ngai KL; Habasaki J; Prevosto D; Capaccioli S; Paluch M
    J Chem Phys; 2012 Jul; 137(3):034511. PubMed ID: 22830715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density scaling of supercooled simple liquids near the glass transition.
    Grzybowski A; Haracz S; Paluch M; Grzybowska K
    J Phys Chem B; 2010 Sep; 114(35):11544-51. PubMed ID: 20707360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equation of state in the generalized density scaling regime studied from ambient to ultra-high pressure conditions.
    Grzybowski A; Koperwas K; Paluch M
    J Chem Phys; 2014 Jan; 140(4):044502. PubMed ID: 25669550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic scaling of dynamics in polymer melts: predictions from the generalized entropy theory.
    Xu WS; Freed KF
    J Chem Phys; 2013 Jun; 138(23):234501. PubMed ID: 23802965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing thermodynamic-dynamic relationships for waterlike liquids.
    Johnson ME; Head-Gordon T
    J Chem Phys; 2009 Jun; 130(21):214510. PubMed ID: 19508079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fractional Stokes-Einstein equation: application to Lennard-Jones, molecular, and ionic liquids.
    Harris KR
    J Chem Phys; 2009 Aug; 131(5):054503. PubMed ID: 19673570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation study of thermodynamic scaling of dynamics of 2Ca(NO3)2·3KNO3.
    Ribeiro MC; Scopigno T; Ruocco G
    J Chem Phys; 2011 Oct; 135(16):164510. PubMed ID: 22047255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tests of an approximate scaling principle for dynamics of classical fluids.
    Young T; Andersen HC
    J Phys Chem B; 2005 Feb; 109(7):2985-94. PubMed ID: 16851313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of an equation of state in the thermodynamic scaling regime.
    Grzybowski A; Paluch M; Grzybowska K
    J Phys Chem B; 2009 May; 113(21):7419-22. PubMed ID: 19413280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended-range order, diverging static length scales, and local structure formation in cold Lennard-Jones fluids.
    Whitford PC; Phillies GD
    J Chem Phys; 2005 Jan; 122(4):44508. PubMed ID: 15740268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random energy model for dynamics in supercooled liquids: N dependence.
    Keyes T; Chowdhary J; Kim J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051110. PubMed ID: 12513470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.