These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 18187251)

  • 1. Noninvasive estimation of temperature elevations in biological tissues using acoustic nonlinearity parameter imaging.
    Liu X; Gong X; Yin C; Li J; Zhang D
    Ultrasound Med Biol; 2008 Mar; 34(3):414-24. PubMed ID: 18187251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of acoustic nonlinearity parameter imaging methods in reflection mode for biological tissues.
    Gong X; Zhang D; Liu J; Wang H; Yan Y; Xu X
    J Acoust Soc Am; 2004 Sep; 116(3):1819-25. PubMed ID: 15478449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental imaging of the acoustic nonlinearity parameter B/A for biological tissues via a parametric array.
    Zhang D; Gong XF; Chen X
    Ultrasound Med Biol; 2001 Oct; 27(10):1359-65. PubMed ID: 11731049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the acoustic nonlinearity parameter B/A in human tissues by a thermodynamic method.
    Sehgal CM; Bahn RC; Greenleaf JF
    J Acoust Soc Am; 1984 Oct; 76(4):1023-9. PubMed ID: 6389643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRI monitoring of heating produced by ultrasound absorption in the skull: in vivo study in pigs.
    McDannold N; King RL; Hynynen K
    Magn Reson Med; 2004 May; 51(5):1061-5. PubMed ID: 15122691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR-based thermometry of laser induced thermotherapy: temperature accuracy and temporal resolution in vitro at 0.2 and 1.5 T magnetic field strengths.
    Vogl TJ; Huebner F; Naguib NN; Bauer RW; Mack MG; Nour-Eldin NE; Meister D
    Lasers Surg Med; 2012 Mar; 44(3):257-65. PubMed ID: 22407543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy.
    Arthur RM; Basu D; Guo Y; Trobaugh JW; Moros EG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1724-33. PubMed ID: 20679004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using ultrasound CBE imaging without echo shift compensation for temperature estimation.
    Tsui PH; Chien YT; Liu HL; Shu YC; Chen WS
    Ultrasonics; 2012 Sep; 52(7):925-35. PubMed ID: 22472015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of the acoustic nonlinearity parameter tomography for excised pathological biological tissues.
    Zhang D; Gong XF
    Ultrasound Med Biol; 1999 May; 25(4):593-9. PubMed ID: 10386735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature- and frequency-dependent dielectric properties of biological tissues within the temperature and frequency ranges typically used for magnetic resonance imaging-guided focused ultrasound surgery.
    Fu F; Xin SX; Chen W
    Int J Hyperthermia; 2014 Feb; 30(1):56-65. PubMed ID: 24417349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulation model for ultrasonic temperature imaging using change in backscattered energy.
    Trobaugh JW; Arthur RM; Straube WL; Moros EG
    Ultrasound Med Biol; 2008 Feb; 34(2):289-98. PubMed ID: 17935869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic measurement of sound velocity fluctuations in biological tissue due to ultrasonic heating and estimation of thermo-physical properties.
    Tsujimoto Y; Morimoto M; Nitta N; Akiyama I
    J Med Ultrason (2001); 2019 Jan; 46(1):35-43. PubMed ID: 30443690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The temperature dependence of ultrasound-stimulated acoustic emission.
    Konofagou EE; Thierman J; Karjalainen T; Hynynen K
    Ultrasound Med Biol; 2002 Mar; 28(3):331-8. PubMed ID: 11978413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic nonlinearity parameter tomography for biological specimens via measurements of the second harmonics.
    Zhang D; Gong X; Ye S
    J Acoust Soc Am; 1996 Apr; 99(4 Pt 1):2397-402. PubMed ID: 8730085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for estimating average grey-level's measurement uncertainty from ultrasound images for non-invasive estimation of temperature in different tissue types.
    Alvarenga AV; Teixeira CAD; von Krüger MA; Pereira WCA
    Ultrasonics; 2020 Aug; 106():106139. PubMed ID: 32298848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity and reliability of temperature measurement by heat flow thermistors, flexible thermocouple probes and thermistors in a stirred water bath.
    Versey NG; Gore CJ; Halson SL; Plowman JS; Dawson BT
    Physiol Meas; 2011 Sep; 32(9):1417-24. PubMed ID: 21788687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours.
    Novák P; Moros EG; Parry JJ; Rogers BE; Myerson RJ; Zeug A; Locke JE; Rossin R; Straube WL; Singh AK
    Phys Med Biol; 2005 Nov; 50(21):5127-39. PubMed ID: 16237245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of pixel shift in ultrasound images due to local temperature changes during the laser interstitial thermotherapy of liver: in vitro study.
    Mokhtari-Dizaji M; Gorjiara T; Ghanaati H
    Ultrasound Med Biol; 2007 Jun; 33(6):934-40. PubMed ID: 17466443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement and use of acoustic nonlinearity and sound speed to estimate composition of excised livers.
    Sehgal CM; Brown GM; Bahn RC; Greenleaf JF
    Ultrasound Med Biol; 1986 Nov; 12(11):865-74. PubMed ID: 3810981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple method for accurate temperature measurement.
    Grucza R; Boruta E
    Acta Physiol Pol; 1980; 31(4):449-52. PubMed ID: 7446155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.