BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18187418)

  • 1. V(D)J recombinase binding and cleavage of cryptic recombination signal sequences identified from lymphoid malignancies.
    Zhang M; Swanson PC
    J Biol Chem; 2008 Mar; 283(11):6717-27. PubMed ID: 18187418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints.
    Raghavan SC; Kirsch IR; Lieber MR
    J Biol Chem; 2001 Aug; 276(31):29126-33. PubMed ID: 11390401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites.
    Marculescu R; Le T; Simon P; Jaeger U; Nadel B
    J Exp Med; 2002 Jan; 195(1):85-98. PubMed ID: 11781368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events.
    Mendes RD; Sarmento LM; Canté-Barrett K; Zuurbier L; Buijs-Gladdines JG; Póvoa V; Smits WK; Abecasis M; Yunes JA; Sonneveld E; Horstmann MA; Pieters R; Barata JT; Meijerink JP
    Blood; 2014 Jul; 124(4):567-78. PubMed ID: 24904117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the leukemia oncogene LMO2: implications for the assembly of a hematopoietic transcription factor complex.
    El Omari K; Hoosdally SJ; Tuladhar K; Karia D; Vyas P; Patient R; Porcher C; Mancini EJ
    Blood; 2011 Feb; 117(7):2146-56. PubMed ID: 21076045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and epigenetic determinants mediate proneness of oncogene breakpoint sites for involvement in TCR translocations.
    Larmonie NS; van der Spek A; Bogers AJ; van Dongen JJ; Langerak AW
    Genes Immun; 2014 Mar; 15(2):72-81. PubMed ID: 24304972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. V(D)J targeting mistakes occur at low frequency in acute lymphoblastic leukemia.
    Vanura K; Vrsalovic MM; Le T; Marculescu R; Kusec R; Jäger U; Nadel B
    Genes Chromosomes Cancer; 2009 Aug; 48(8):725-36. PubMed ID: 19455608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA cleavage of a cryptic recombination signal sequence by RAG1 and RAG2. Implications for partial V(H) gene replacement.
    Rahman NS; Godderz LJ; Stray SJ; Capra JD; Rodgers KK
    J Biol Chem; 2006 May; 281(18):12370-80. PubMed ID: 16531612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic requirement of orphan nonamer-like elements and DNA bending enhanced by HMGB1 for RAG-mediated nicking at cryptic 12-RSS but not authentic 12-RSS.
    Numata M; Nagata K
    Genes Cells; 2011 Aug; 16(8):879-95. PubMed ID: 21740486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMGB1/2 can target DNA for illegitimate cleavage by the RAG1/2 complex.
    Zhang M; Swanson PC
    BMC Mol Biol; 2009 Mar; 10():24. PubMed ID: 19317908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early steps of V(D)J rearrangement: insights from biochemical studies of RAG-RSS complexes.
    Swanson PC; Kumar S; Raval P
    Adv Exp Med Biol; 2009; 650():1-15. PubMed ID: 19731797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of V(D)J-mediated recombination of an extrachromosomal substrate following exposure to DNA-damaging agents.
    Pinsonneault RL; Vacek PM; O'Neill JP; Finette BA
    Environ Mol Mutagen; 2007 Jul; 48(6):440-50. PubMed ID: 17584881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analyses of RAG-RSS interactions and conformations revealed by atomic force microscopy.
    Pavlicek JW; Lyubchenko YL; Chang Y
    Biochemistry; 2008 Oct; 47(43):11204-11. PubMed ID: 18831563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Riches in RAGs: Revealing the V(D)J Recombinase through High-Resolution Structures.
    Rodgers KK
    Trends Biochem Sci; 2017 Jan; 42(1):72-84. PubMed ID: 27825771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis.
    Ballerini P; Blaise A; Busson-Le Coniat M; Su XY; Zucman-Rossi J; Adam M; van den Akker J; Perot C; Pellegrino B; Landman-Parker J; Douay L; Berger R; Bernard OA
    Blood; 2002 Aug; 100(3):991-7. PubMed ID: 12130513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DNA-binding mutant of TAL1 cooperates with LMO2 to cause T cell leukemia in mice.
    Draheim KM; Hermance N; Yang Y; Arous E; Calvo J; Kelliher MA
    Oncogene; 2011 Mar; 30(10):1252-60. PubMed ID: 21057528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of SIL-TAL1 fusion gene transcripts associated with human T-cell lymphocytic leukemia by real-time reverse transcriptase-PCR.
    Curry JD; Smith MT
    Leuk Res; 2003 Jul; 27(7):575-82. PubMed ID: 12681356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of RAG transposition.
    Matthews AG; Oettinger MA
    Adv Exp Med Biol; 2009; 650():16-31. PubMed ID: 19731798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia.
    Ferrando AA; Neuberg DS; Staunton J; Loh ML; Huard C; Raimondi SC; Behm FG; Pui CH; Downing JR; Gilliland DG; Lander ES; Golub TR; Look AT
    Cancer Cell; 2002 Feb; 1(1):75-87. PubMed ID: 12086890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice.
    Aplan PD; Jones CA; Chervinsky DS; Zhao X; Ellsworth M; Wu C; McGuire EA; Gross KW
    EMBO J; 1997 May; 16(9):2408-19. PubMed ID: 9171354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.