BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 1818761)

  • 1. Solid state 31NMR studies of the conversion of amorphous tricalcium phosphate to apatitic tricalcium phosphate.
    Roberts JE; Heughebaert M; Heughebaert JC; Bonar LC; Glimcher MJ; Griffin RG
    Calcif Tissue Int; 1991 Dec; 49(6):378-82. PubMed ID: 1818761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of amorphous tricalcium phosphate into apatitic tricalcium phosphate.
    Heughebaert JC; Montel G
    Calcif Tissue Int; 1982; 34 Suppl 2():S103-8. PubMed ID: 6293671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of brushite and octacalcium phosphate in apatite formation.
    Johnsson MS; Nancollas GH
    Crit Rev Oral Biol Med; 1992; 3(1-2):61-82. PubMed ID: 1730071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of very young mineral phases of bone by solid state 31phosphorus magic angle sample spinning nuclear magnetic resonance and X-ray diffraction.
    Roberts JE; Bonar LC; Griffin RG; Glimcher MJ
    Calcif Tissue Int; 1992 Jan; 50(1):42-8. PubMed ID: 1739869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-state phosphorus-31 nuclear magnetic resonance studies of synthetic solid phases of calcium phosphate: potential models of bone mineral.
    Aue WP; Roufosse AH; Glimcher MJ; Griffin RG
    Biochemistry; 1984 Dec; 23(25):6110-4. PubMed ID: 6525349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.
    Von Euw S; Ajili W; Chan-Chang TH; Delices A; Laurent G; Babonneau F; Nassif N; Azaïs T
    Acta Biomater; 2017 Sep; 59():351-360. PubMed ID: 28690009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poorly crystalline apatites: evolution and maturation in vitro and in vivo.
    Cazalbou S; Combes C; Eichert D; Rey C; Glimcher MJ
    J Bone Miner Metab; 2004; 22(4):310-7. PubMed ID: 15221488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release.
    Niu X; Chen S; Tian F; Wang L; Feng Q; Fan Y
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1120-1124. PubMed ID: 27772712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of copper substitution on the local chemical structure and dissolution property of copper-doped β-tricalcium phosphate.
    Konishi T; Nagano Y; Maegawa M; Lim PN; Thian ES
    Acta Biomater; 2019 Jun; 91():72-81. PubMed ID: 31034946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy.
    Wu Y; Glimcher MJ; Rey C; Ackerman JL
    J Mol Biol; 1994 Dec; 244(4):423-35. PubMed ID: 7990131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient precursor strategy or very small biological apatite crystals?
    Grynpas MD; Omelon S
    Bone; 2007 Aug; 41(2):162-4. PubMed ID: 17537689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On Grounds of the Memory Effect in Amorphous and Crystalline Apatite: Kinetics of Crystallization and Biological Response.
    Uskoković V; Tang S; Wu VM
    ACS Appl Mater Interfaces; 2018 May; 10(17):14491-14508. PubMed ID: 29625010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization.
    Wu Y; Ackerman JL; Strawich ES; Rey C; Kim HM; Glimcher MJ
    Calcif Tissue Int; 2003 May; 72(5):610-26. PubMed ID: 12724829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-state 13 C and 31 P NMR analysis of urinary stones.
    Bak M; Thomsen JK; Jakobsen HJ; Petersen SE; Petersen TE; Nielsen NC
    J Urol; 2000 Sep; 164(3 Pt 1):856-63. PubMed ID: 10953168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluoride uptake by hydroxyapatite formed by the hydrolysis of alpha-tricalcium phosphate.
    Leamy P; Brown PW; TenHuisen K; Randall C
    J Biomed Mater Res; 1998 Dec; 42(3):458-64. PubMed ID: 9788510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of dicalcium phosphate dihydrate in the presence or absence of calcium fluoride.
    Tung MS; Chow LC; Brown WE
    J Dent Res; 1985 Jan; 64(1):2-5. PubMed ID: 3855414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the mineral phases of bone by solid-state phosphorus-31 magic angle sample spinning nuclear magnetic resonance.
    Roufosse AH; Aue WP; Roberts JE; Glimcher MJ; Griffin RG
    Biochemistry; 1984 Dec; 23(25):6115-20. PubMed ID: 6525350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and transformation of calcium phosphate phases under biologically relevant conditions: Experiments and modelling.
    Carino A; Ludwig C; Cervellino A; Müller E; Testino A
    Acta Biomater; 2018 Jul; 74():478-488. PubMed ID: 29778896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate-water interplay tunes amorphous calcium carbonate metastability: spontaneous phase separation and crystallization vs stabilization viewed by solid state NMR.
    Kababya S; Gal A; Kahil K; Weiner S; Addadi L; Schmidt A
    J Am Chem Soc; 2015 Jan; 137(2):990-8. PubMed ID: 25523637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.