BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 1818762)

  • 1. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Dec; 49(6):383-8. PubMed ID: 1818762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.
    Sauer GR; Zunic WB; Durig JR; Wuthier RE
    Calcif Tissue Int; 1994 May; 54(5):414-20. PubMed ID: 8062160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging.
    Rey C; Renugopalakrishnan V; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Oct; 49(4):251-8. PubMed ID: 1760769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonate ions in apatites: infrared investigations in the upsilon 4 CO3 domain.
    el Feki H; Rey C; Vignoles M
    Calcif Tissue Int; 1991 Oct; 49(4):269-74. PubMed ID: 1760771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of the CO3(2-) ion in the mineral phase of enamel during its formation and maturation.
    Rey C; Renugopalakrishnan V; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Oct; 49(4):259-68. PubMed ID: 1760770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative infrared spectroscopic study of hydroxide and carbonate absorption bands in spectra of shark enameloid, shark dentin, and a geological apatite.
    Dahm S; Risnes S
    Calcif Tissue Int; 1999 Dec; 65(6):459-65. PubMed ID: 10594165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in acid-phosphate content in enamel mineral during porcine amelogenesis.
    Shimoda S; Aoba T; Moreno EC
    J Dent Res; 1991 Dec; 70(12):1516-23. PubMed ID: 1774383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and composition studies on the mineral of newly formed dental enamel: a chemical, x-ray diffraction, and 31P and proton nuclear magnetic resonance study.
    Bonar LC; Shimizu M; Roberts JE; Griffin RG; Glimcher MJ
    J Bone Miner Res; 1991 Nov; 6(11):1167-76. PubMed ID: 1666806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carbonate environment in bone mineral: a resolution-enhanced Fourier Transform Infrared Spectroscopy Study.
    Rey C; Collins B; Goehl T; Dickson IR; Glimcher MJ
    Calcif Tissue Int; 1989 Sep; 45(3):157-64. PubMed ID: 2505907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites.
    LeGeros RZ; Kijkowska R; Bautista C; LeGeros JP
    Connect Tissue Res; 1995; 33(1-3):203-9. PubMed ID: 7554956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poorly crystalline apatites: evolution and maturation in vitro and in vivo.
    Cazalbou S; Combes C; Eichert D; Rey C; Glimcher MJ
    J Bone Miner Metab; 2004; 22(4):310-7. PubMed ID: 15221488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite.
    Grimes V; Pellegrini M
    Rapid Commun Mass Spectrom; 2013 Feb; 27(3):375-90. PubMed ID: 23280969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform infrared characterization of mineral phases formed during induction of mineralization by collagenase-released matrix vesicles in vitro.
    Sauer GR; Wuthier RE
    J Biol Chem; 1988 Sep; 263(27):13718-24. PubMed ID: 2843533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The orange-brown patina of Salisbury Cathedral (West Porch) surfaces: evidence of its man-made origin.
    Martín-Gil J; Martín-Gil FJ; del Carmen Ramos-Sánchez M; Martín-Ramos P
    Environ Sci Pollut Res Int; 2005 Sep; 12(5):285-9. PubMed ID: 16206722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural studies of the mineral phase of calcifying cartilage.
    Rey C; Beshah K; Griffin R; Glimcher MJ
    J Bone Miner Res; 1991 May; 6(5):515-25. PubMed ID: 2068959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release.
    Niu X; Chen S; Tian F; Wang L; Feng Q; Fan Y
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1120-1124. PubMed ID: 27772712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium phosphate phase transformation produced by the interaction of the portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid.
    Tay FR; Pashley DH; Rueggeberg FA; Loushine RJ; Weller RN
    J Endod; 2007 Nov; 33(11):1347-51. PubMed ID: 17963961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy.
    Wu Y; Glimcher MJ; Rey C; Ackerman JL
    J Mol Biol; 1994 Dec; 244(4):423-35. PubMed ID: 7990131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnesium and carbonate in enamel and synthetic apatites.
    LeGeros RZ; Sakae T; Bautista C; Retino M; LeGeros JP
    Adv Dent Res; 1996 Nov; 10(2):225-31. PubMed ID: 9206341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.