BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 1818762)

  • 21. Epitaxial overgrowth of apatite crystals on the thin-ribbon precursor at early stages of porcine enamel mineralization.
    Miake Y; Shimoda S; Fukae M; Aoba T
    Calcif Tissue Int; 1993 Oct; 53(4):249-56. PubMed ID: 8275353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient precursor strategy or very small biological apatite crystals?
    Grynpas MD; Omelon S
    Bone; 2007 Aug; 41(2):162-4. PubMed ID: 17537689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Raman spectrometry applied to calcified tissue and calcium-phosphorus biomaterials].
    Penel G; Leroy G; Leroy N; Behin P; Langlois JM; Libersa JC; Dupas PH
    Bull Group Int Rech Sci Stomatol Odontol; 2000; 42(2-3):55-63. PubMed ID: 11799728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Basic fibroblast growth factor adsorption and release properties of calcium phosphate.
    Midy V; Rey C; Bres E; Dard M
    J Biomed Mater Res; 1998 Sep; 41(3):405-11. PubMed ID: 9659610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gradient structural bone-like apatite induced by chitosan hydrogel via ion assembly.
    Li B; Wang Y; Jia D; Zhou Y
    J Biomater Sci Polym Ed; 2011; 22(4-6):505-17. PubMed ID: 20566043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the mineral phases of bone by solid-state phosphorus-31 magic angle sample spinning nuclear magnetic resonance.
    Roufosse AH; Aue WP; Roberts JE; Glimcher MJ; Griffin RG
    Biochemistry; 1984 Dec; 23(25):6115-20. PubMed ID: 6525350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid-state phosphorus-31 nuclear magnetic resonance studies of synthetic solid phases of calcium phosphate: potential models of bone mineral.
    Aue WP; Roufosse AH; Glimcher MJ; Griffin RG
    Biochemistry; 1984 Dec; 23(25):6110-4. PubMed ID: 6525349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman spectra of human dentin mineral.
    Tsuda H; Ruben J; Arends J
    Eur J Oral Sci; 1996 Apr; 104(2 ( Pt 1)):123-31. PubMed ID: 8804900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure, composition, and maturation of newly deposited calcium-phosphate crystals in chicken osteoblast cell cultures.
    Kuhn LT; Wu Y; Rey C; Gerstenfeld LC; Grynpas MD; Ackerman JL; Kim HM; Glimcher MJ
    J Bone Miner Res; 2000 Jul; 15(7):1301-9. PubMed ID: 10893678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing atomic scale transformation of fossil dental enamel using Fourier transform infrared and nuclear magnetic resonance spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya).
    Yi H; Balan E; Gervais C; Ségalen L; Roche D; Person A; Fayon F; Morin G; Babonneau F
    Acta Biomater; 2014 Sep; 10(9):3952-8. PubMed ID: 24389267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and chemical characteristics and maturation of the calcium-phosphate crystals formed during the calcification of the organic matrix synthesized by chicken osteoblasts in cell culture.
    Rey C; Kim HM; Gerstenfeld L; Glimcher MJ
    J Bone Miner Res; 1995 Oct; 10(10):1577-88. PubMed ID: 8686515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites.
    Wu Y; Ackerman JL; Kim HM; Rey C; Barroug A; Glimcher MJ
    J Bone Miner Res; 2002 Mar; 17(3):472-80. PubMed ID: 11874238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures.
    Querido W; Campos AP; Martins Ferreira EH; San Gil RA; Rossi AM; Farina M
    Cell Tissue Res; 2014 Sep; 357(3):793-801. PubMed ID: 24859219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of fluoride treatment on bone mineral crystals in the rat.
    Grynpas MD; Rey C
    Bone; 1992; 13(6):423-9. PubMed ID: 1476820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of solution composition on morphological and structural features of carbonated calcium apatites.
    Shimoda S; Aoba T; Moreno EC; Miake Y
    J Dent Res; 1990 Nov; 69(11):1731-40. PubMed ID: 2229611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite.
    Spevak L; Flach CR; Hunter T; Mendelsohn R; Boskey A
    Calcif Tissue Int; 2013 May; 92(5):418-28. PubMed ID: 23380987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The problems of the composition and structure of the mineral components of the hard tissues.
    Elliott JC
    Clin Orthop Relat Res; 1973 Jun; (93):313-45. PubMed ID: 4579096
    [No Abstract]   [Full Text] [Related]  

  • 38. Dissolution of poorly crystalline apatite crystals by osteoclasts determined on artificial thin-film apatite.
    Kim HM; Kim YS; Woo KM; Park SJ; Rey C; Kim Y; Kim JK; Ko JS
    J Biomed Mater Res; 2001 Aug; 56(2):250-6. PubMed ID: 11340596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation, analysis, and characterization of carbonated apatites.
    Nelson DG; Featherstone JD
    Calcif Tissue Int; 1982; 34 Suppl 2():S69-81. PubMed ID: 6293677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.
    Von Euw S; Ajili W; Chan-Chang TH; Delices A; Laurent G; Babonneau F; Nassif N; Azaïs T
    Acta Biomater; 2017 Sep; 59():351-360. PubMed ID: 28690009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.