These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 18188202)

  • 1. Raman spectroscopy for the characterization of the polymerization rate in an acrylamide-based photopolymer.
    Jallapuram R; Naydenova I; Byrne HJ; Martin S; Howard R; Toal V
    Appl Opt; 2008 Jan; 47(2):206-12. PubMed ID: 18188202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film.
    Moothanchery M; Naydenova I; Toal V
    Opt Express; 2011 Jul; 19(14):13395-404. PubMed ID: 21747495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model.
    Gleeson MR; Sheridan JT; Bruder FK; Rölle T; Berneth H; Weiser MS; Fäcke T
    Opt Express; 2011 Dec; 19(27):26325-42. PubMed ID: 22274217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of monomer/crosslinker consumption and polymer formation observed in FT-Raman spectra of irradiated polyacrylamide gels.
    Jirasek AI; Duzenli C; Audet C; Eldridge J
    Phys Med Biol; 2001 Jan; 46(1):151-65. PubMed ID: 11197669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress characterization of Si by near-field Raman microscope using resonant scattering.
    Yoshikawa M; Murakami M
    Appl Spectrosc; 2006 May; 60(5):479-82. PubMed ID: 16756697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.
    Saariaho AM; Jääskeläinen AS; Nuopponen M; Vuorinen T
    Appl Spectrosc; 2003 Jan; 57(1):58-66. PubMed ID: 14610937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive and spatially resolved polyvinyl alcohol/acrylamide photopolymer for real-time holographic applications.
    Zhu J; Wang G; Hao Y; Xie B; Cheng AY
    Opt Express; 2010 Aug; 18(17):18106-12. PubMed ID: 20721198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acrylamide polymerization kinetics in gel electrophoresis capillaries. A Raman microprobe study.
    Rapp TL; Kowalchyk WK; Davis KL; Todd EA; Liu KL; Morris MD
    Anal Chem; 1992 Oct; 64(20):2434-7. PubMed ID: 1466453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral index dependence of the G+ and G- Raman modes in semiconducting carbon nanotubes.
    Telg H; Duque JG; Staiger M; Tu X; Hennrich F; Kappes MM; Zheng M; Maultzsch J; Thomsen C; Doorn SK
    ACS Nano; 2012 Jan; 6(1):904-11. PubMed ID: 22175270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer.
    Fuentes R; Fernández E; García C; Beléndez A; Pascual I
    Appl Opt; 2009 Dec; 48(34):6553-7. PubMed ID: 19956309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of glycerol on a diacetone acrylamide-based holographic photopolymer material.
    Cody D; Naydenova I; Mihaylova E
    Appl Opt; 2013 Jan; 52(3):489-94. PubMed ID: 23338198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shrinkage during holographic recording in photopolymer films determined by holographic interferometry.
    Moothanchery M; Bavigadda V; Toal V; Naydenova I
    Appl Opt; 2013 Dec; 52(35):8519-27. PubMed ID: 24513896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and sensitive detection of acrylamide in fried food using dispersive solid-phase extraction combined with surface-enhanced Raman spectroscopy.
    Cheng J; Zhang S; Wang S; Wang P; Su XO; Xie J
    Food Chem; 2019 Mar; 276():157-163. PubMed ID: 30409579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of triacylglycerols and edible oils by near-infrared Fourier transform Raman spectroscopy.
    Weng YM; Weng RH; Tzeng CY; Chen W
    Appl Spectrosc; 2003 Apr; 57(4):413-8. PubMed ID: 14658638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for quantifying the intensity of the C=C band of dimethacrylate dental monomers in their FTIR and Raman spectra.
    Gauthier MA; Stangel I; Ellis TH; Zhu XX
    Biomaterials; 2005 Nov; 26(33):6440-8. PubMed ID: 15936071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of radiochromic film as a high-spatial resolution dosimeter by Raman spectroscopy.
    Mirza JA; Park H; Park SY; Ye SJ
    Med Phys; 2016 Aug; 43(8):4520. PubMed ID: 27487869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of hydroxyethyl acrylamide addition to dental adhesive resin.
    Rodrigues SB; Collares FM; Leitune VC; Schneider LF; Ogliari FA; Petzhold CL; Samuel SM
    Dent Mater; 2015 Dec; 31(12):1579-86. PubMed ID: 26549355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ and real time monitoring of two-photon polymerization using broadband coherent anti-Stokes Raman scattering microscopy.
    Baldacchini T; Zadoyan R
    Opt Express; 2010 Aug; 18(18):19219-31. PubMed ID: 20940818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonant Raman spectroscopy of nanotubes.
    Thomsen C; Reich S; Maultzsch J
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2337-59. PubMed ID: 15482982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lowest limit for detection of impurity concentration in semiconductors by fluorescence XAFS: resonant Raman scattering and angle dependence.
    Takeda Y; Ofuchi H; Kyouzu H; Takahashi R; Tabuchi M
    J Synchrotron Radiat; 2005 Jul; 12(Pt 4):494-8. PubMed ID: 15968128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.