These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18188392)

  • 1. Generation of 113-GHz, 1.8-ps optical pulse trains by Fourier synthesis of four-wave mixing signals obtained from semiconductor optical amplifiers.
    Futami F; Kikuchi K
    Opt Lett; 1997 Dec; 22(24):1873-5. PubMed ID: 18188392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier synthesis of 9.6-GHz optical-pulse trains by phase locking of three continuous-wave semiconductor lasers.
    Hyodo M; Onodera N; Abedin KS
    Opt Lett; 1999 Mar; 24(5):303-5. PubMed ID: 18071487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing.
    Cordette S; Vedadi A; Shoaie MA; Brès CS
    Opt Lett; 2014 Dec; 39(23):6668-71. PubMed ID: 25490648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-optical pulse generation based on gain-induced four-wave mixing in a semiconductor optical amplifier.
    Li F; Helmy AS
    Opt Lett; 2013 Apr; 38(8):1241-3. PubMed ID: 23595445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of in-phase pulse train from optical beat signal.
    Inoue T; Hiroishi J; Yagi T; Mimura Y
    Opt Lett; 2007 Jun; 32(11):1596-8. PubMed ID: 17546200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-optical square-pulse generation and multiplication at 1.5 mum by use of a novel class of fiber Bragg gratings.
    Marano M; Longhi S; Laporta P; Belmonte M; Agogliati B
    Opt Lett; 2001 Oct; 26(20):1615-7. PubMed ID: 18049681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers.
    Su H; Kondratko P; Chuang SL
    Opt Express; 2006 May; 14(11):4800-7. PubMed ID: 19516637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-wavelength parallel optical fiber dispersion measurement using dual-heterodyne mixing.
    Shioda T; Shimizu N; Nakamura M
    Appl Opt; 2012 Sep; 51(27):6586-93. PubMed ID: 23033029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual chirped optical pulses from a phase-modulated laser.
    Kim Y; Kim DY
    Opt Express; 2007 Dec; 15(25):16357-66. PubMed ID: 19550926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repetition-rate-tunable return-to-zero and carrier-suppressed return-to-zero optical pulse train generation using a polarization modulator.
    Zou X; Yao J
    Opt Lett; 2009 Feb; 34(3):313-5. PubMed ID: 19183642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator.
    Sakamoto T; Kawanishi T; Tsuchiya M
    Opt Lett; 2008 Apr; 33(8):890-2. PubMed ID: 18414567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier synthesis of 1.8-THz optical-pulse trains by phase locking of three independent semiconductor lasers.
    Hyodo M; Abedin KS; Onodera N
    Opt Lett; 2001 Mar; 26(6):340-2. PubMed ID: 18040317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode-locking and frequency mixing at THz pulse repetition rates in a sampled-grating DBR mode-locked laser.
    Hou L; Haji M; Marsh JH
    Opt Express; 2014 Sep; 22(18):21690-700. PubMed ID: 25321545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization-insensitive phase conjugation using single pump Bragg-scattering four-wave mixing in semiconductor optical amplifiers.
    Sobhanan A; Venkitesh D
    Opt Express; 2018 Sep; 26(18):22761-22772. PubMed ID: 30184931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of a superstable Lorentzian pulse train with a high repetition frequency based on a Fabry-Perot resonator integrated with an electro-optic phase modulator.
    Kato M; Fujiura K; Kurihara T
    Appl Opt; 2005 Mar; 44(7):1263-9. PubMed ID: 15765706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental demonstration of microring-based optical pulse train generator.
    Wang S; Wu H
    Opt Express; 2011 Aug; 19(17):16259-65. PubMed ID: 21934989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of a 160-GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal.
    Pitois S; Fatome J; Millot G
    Opt Lett; 2002 Oct; 27(19):1729-31. PubMed ID: 18033350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-stabilizing optical clock pulse-train generator using SOA and saturable absorber for asynchronous optical packet processing.
    Nakahara T; Takahashi R
    Opt Express; 2013 May; 21(9):10712-9. PubMed ID: 23669927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband high-resolution microwave frequency measurement based on photonic undersampling via using three cavity-less optical pulse sources with coprime repetition rates.
    Zhang X; Peng D; Ma Y; Wang B; Wang M; Li Z; Zhang Z; Zhang S; Li H; Liu Y
    Appl Opt; 2020 Sep; 59(27):8056-8065. PubMed ID: 32976382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gigahertz to terahertz tunable all-optical single-side-band microwave generation via semiconductor optical amplifier gain engineering.
    Li F; Helmy AS
    Opt Lett; 2013 Nov; 38(22):4542-5. PubMed ID: 24322069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.