BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18188471)

  • 1. Coordination pillared-layer type compounds having pore surface functionalization by anionic sulfonate groups.
    Horike S; Bureekaew S; Kitagawa S
    Chem Commun (Camb); 2008 Jan; (4):471-3. PubMed ID: 18188471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules.
    Seo J; Matsuda R; Sakamoto H; Bonneau C; Kitagawa S
    J Am Chem Soc; 2009 Sep; 131(35):12792-800. PubMed ID: 19681608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guest-responsive function of a dynamic metal-organic framework with a π Lewis acidic pore surface.
    Joarder B; Mukherjee S; Chaudhari AK; Desai AV; Manna B; Ghosh SK
    Chemistry; 2014 Nov; 20(47):15303-8. PubMed ID: 25319553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen-bonded metal-complex sulfonate (MCS) inclusion compounds: effect of the guest molecule on the host framework.
    Wang XY; Justice R; Sevov SC
    Inorg Chem; 2007 May; 46(11):4626-31. PubMed ID: 17461580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of anionic sulfonate-containing and nitrogen-containing mixed-ligands on the structures of silver coordination polymers.
    Wu H; Dong XW; Ma JF; Liu HY; Yang J; Bai HY
    Dalton Trans; 2009 May; (17):3162-74. PubMed ID: 19421618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bimetallic pillared-layer metal-organic coordination framework with a 3D biporous structure.
    Maji TK; Pal S; Gurunatha KL; Govindaraj A; Rao CN
    Dalton Trans; 2009 Jun; (23):4426-8. PubMed ID: 19488436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic investigation on the coordination chemistry of a sulfonated monoazo dye: ligand-dominated d- and f-block derivatives.
    Lü J; Gao SY; Lin JX; Shi LX; Cao R; Batten SR
    Dalton Trans; 2009 Mar; (11):1944-53. PubMed ID: 19259564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers.
    Navarro JA; Barea E; Salas JM; Masciocchi N; Galli S; Sironi A; Ania CO; Parra JB
    Inorg Chem; 2006 Mar; 45(6):2397-9. PubMed ID: 16529456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two highly-connected, chiral, porous coordination polymers featuring novel heptanuclear metal carboxylate clusters.
    Hou L; Zhang JP; Chen XM; Ng SW
    Chem Commun (Camb); 2008 Sep; (34):4019-21. PubMed ID: 18758612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pillared porphyrin homologous series: intergrowth in metal-organic frameworks.
    Choi EY; Barron PM; Novotny RW; Son HT; Hu C; Choe W
    Inorg Chem; 2009 Jan; 48(2):426-8. PubMed ID: 19090682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of sodium ions on the pore surface of a porous coordination polymer.
    Horike S; Matsuda R; Tanaka D; Mizuno M; Endo K; Kitagawa S
    J Am Chem Soc; 2006 Apr; 128(13):4222-3. PubMed ID: 16568985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous metal-organic framework based on mu4-oxo tetrazinc clusters: sorption and guest-dependent luminescent properties.
    Hou L; Lin YY; Chen XM
    Inorg Chem; 2008 Feb; 47(4):1346-51. PubMed ID: 18205303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of a series of cobalt(II) coordination polymers constructed from H2tbip and dipyridyl-based ligands.
    Ma LF; Wang LY; Wang YY; Batten SR; Wang JG
    Inorg Chem; 2009 Feb; 48(3):915-24. PubMed ID: 19117421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of anionic sulfonate-containing co-ligands on the solid structures of silver complexes supported by 4,4'-bipyridine bridges.
    Wu H; Dong XW; Liu HY; Ma JF; Li SL; Yang J; Liu YY; Su ZM
    Dalton Trans; 2008 Oct; (39):5331-41. PubMed ID: 18827940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites.
    Lin X; Telepeni I; Blake AJ; Dailly A; Brown CM; Simmons JM; Zoppi M; Walker GS; Thomas KM; Mays TJ; Hubberstey P; Champness NR; Schröder M
    J Am Chem Soc; 2009 Feb; 131(6):2159-71. PubMed ID: 19159298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of POMs and deliberately designed macrocations: a rational approach for synthesis of POM-pillared metal-organic framework.
    Lan YQ; Li SL; Shao KZ; Wang XL; Hao XR; Su ZM
    Dalton Trans; 2009 Feb; (6):940-7. PubMed ID: 19173076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A porous coordination polymer with accessible metal sites and its complementary coordination action.
    Sakamoto H; Matsuda R; Bureekaew S; Tanaka D; Kitagawa S
    Chemistry; 2009; 15(20):4985-9. PubMed ID: 19343758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystalline-state guest-exchange and gas-adsorption phenomenon for a "soft" supramolecular porous framework stacking by a rigid linear coordination polymer.
    Hu S; He KH; Zeng MH; Zou HH; Jiang YM
    Inorg Chem; 2008 Jun; 47(12):5218-24. PubMed ID: 18479120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination chemistry of conformation-flexible 1,2,3,4,5,6-cyclohexanehexacarboxylate: trapping various conformations in metal-organic frameworks.
    Wang J; Lin ZJ; Ou YC; Shen Y; Herchel R; Tong ML
    Chemistry; 2008; 14(24):7218-35. PubMed ID: 18618562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. d(10)-Metal coordination polymers based on analogue di(pyridyl)imidazole derivatives and 4,4'-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity.
    Lan YQ; Li SL; Fu YM; Xu YH; Li L; Su ZM; Fu Q
    Dalton Trans; 2008 Dec; (47):6796-807. PubMed ID: 19153627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.