These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 18188848)

  • 1. Energy-efficient syngas production through catalytic oxy-methane reforming reactions.
    Choudhary TV; Choudhary VR
    Angew Chem Int Ed Engl; 2008; 47(10):1828-47. PubMed ID: 18188848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane.
    Ha KS; Bae JW; Woo KJ; Jun KW
    Environ Sci Technol; 2010 Feb; 44(4):1412-7. PubMed ID: 20078033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane oxidation at redox stable fuel cell electrode La0.75Sr0.25Cr0.5Mn0.5O(3-delta).
    Tao S; Irvine JT; Plint SM
    J Phys Chem B; 2006 Nov; 110(43):21771-6. PubMed ID: 17064138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcalorimetric and infrared studies of ethanol and acetaldehyde adsorption to investigate the ethanol steam reforming on supported cobalt catalysts.
    Guil JM; Homs N; Llorca J; Ramírez de la Piscina P
    J Phys Chem B; 2005 Jun; 109(21):10813-9. PubMed ID: 16852315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.
    Mondal K; Sasmal S; Badgandi S; Chowdhury DR; Nair V
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22267-22273. PubMed ID: 26939689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM.
    Özcan MD; Özcan O; Akın AN
    Environ Technol; 2020 Jan; 41(1):14-28. PubMed ID: 31264942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [In-situ DRIFTS study of coupling partial oxidation of methane and carbon dioxide reforming].
    Ji HB; Xu JH; Xie JF; Chen QL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1246-50. PubMed ID: 18800697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging trends in hydrogen and synfuel generation: a state-of-the-art review.
    Alhassan M; Jalil AA; Owgi AHK; Hamid MYS; Bahari MB; Van Tran T; Nabgan W; Hatta AH; Khusnun NFB; Amusa AA; Nyakuma BB
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):42640-42671. PubMed ID: 38902444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field.
    Sekine Y; Haraguchi M; Tomioka M; Matsukata M; Kikuchi E
    J Phys Chem A; 2010 Mar; 114(11):3824-33. PubMed ID: 20235604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ Raman and pulse reaction study on the partial oxidation of methane to synthesis gas over a Pt/Al2O3 catalyst.
    Wang ML; Zheng HZ; Li JM; Weng WZ; Xia WS; Huang CJ; Wan HL
    Chem Asian J; 2011 Feb; 6(2):580-9. PubMed ID: 21254432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.
    Li S; Gong J
    Chem Soc Rev; 2014 Nov; 43(21):7245-56. PubMed ID: 25182070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic study of partial oxidation of methane to syngas using in situ time-resolved FTIR and microprobe Raman spectroscopies.
    Weng WZ; Chen MS; Wan HL
    Chem Rec; 2002; 2(2):102-12. PubMed ID: 12001209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoassisted Selective Steam and Dry Reforming of Methane to Syngas Catalyzed by Rhodium-Vanadium Bimetallic Oxide Cluster Anions at Room Temperature.
    Zhao YX; Yang B; Li HF; Zhang Y; Yang Y; Liu QY; Xu HG; Zheng WJ; He SG
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):21216-21223. PubMed ID: 32767516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic aromatization of methane.
    Spivey JJ; Hutchings G
    Chem Soc Rev; 2014 Feb; 43(3):792-803. PubMed ID: 24253354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalysis in high-temperature fuel cells.
    Föger K; Ahmed K
    J Phys Chem B; 2005 Feb; 109(6):2149-54. PubMed ID: 16851206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors.
    Ghasem N
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysts for Hydrogen Generation via Oxy-Steam Reforming of Methanol Process.
    Mosińska M; Szynkowska-Jóźwik MI; Mierczyński P
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalyst screening for oxidative reforming of methane in direct route using high pressure HTS reactor with syngas detection system by colorimetric reaction and gas chromatograph.
    Omata K; Ishii H; Horiguchi J; Kobayashi S; Yamazaki Y; Yamada M
    J Comb Chem; 2009; 11(1):169-74. PubMed ID: 19133839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.