These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 18188848)

  • 21. Gasification of refuse derived fuel in a fixed bed reactor for syngas production.
    Dalai AK; Batta N; Eswaramoorthi I; Schoenau GJ
    Waste Manag; 2009 Jan; 29(1):252-8. PubMed ID: 18434127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steam plasmatron gasification of distillers grains residue from ethanol production.
    Shie JL; Tsou FJ; Lin KL
    Bioresour Technol; 2010 Jul; 101(14):5571-7. PubMed ID: 20163957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High efficient conversion of CO2-rich bio-syngas to CO-rich bio-syngas using biomass char: a useful approach for production of bio-methanol from bio-oil.
    Xu Y; Ye TQ; Qiu SB; Ning S; Gong FY; Liu Y; Li QX
    Bioresour Technol; 2011 May; 102(10):6239-45. PubMed ID: 21392976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production.
    Bauer A; Bösch P; Friedl A; Amon T
    J Biotechnol; 2009 Jun; 142(1):50-5. PubMed ID: 19480947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sewage sludge pyrolysis coupled with self-supplied steam reforming for high quality syngas production and the influence of initial moisture content.
    Mei Z; Chen D; Zhang J; Yin L; Huang Z; Xin Q
    Waste Manag; 2020 Apr; 106():77-87. PubMed ID: 32199229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of hydrogen-rich gas from methane by thermal plasma reform.
    Chun YN; Kim SC
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1447-51. PubMed ID: 18200929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
    Buelens LC; Galvita VV; Poelman H; Detavernier C; Marin GB
    Science; 2016 Oct; 354(6311):449-452. PubMed ID: 27738013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. H
    De Maron J; Mafessanti R; Gramazio P; Orfei E; Fasolini A; Basile F
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO
    Wu X; Xu L; Chen M; Lv C; Wen X; Cui Y; Wu CE; Yang B; Miao Z; Hu X
    Front Chem; 2020; 8():581923. PubMed ID: 33195071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biogas Reforming to Syngas: A Review.
    Zhao X; Joseph B; Kuhn J; Ozcan S
    iScience; 2020 May; 23(5):101082. PubMed ID: 32380422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.
    Zhang C; Jun KW; Ha KS; Lee YJ; Kang SC
    Environ Sci Technol; 2014 Jul; 48(14):8251-7. PubMed ID: 24933030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental Study on Dry Reforming of Biogas for Syngas Production over Ni-Based Catalysts.
    Chein R; Yang Z
    ACS Omega; 2019 Dec; 4(25):20911-20922. PubMed ID: 31867481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined Syngas and Hydrogen Production using Gas Switching Technology.
    Ugwu A; Zaabout A; Donat F; van Diest G; Albertsen K; Müller C; Amini S
    Ind Eng Chem Res; 2021 Mar; 60(9):3516-3531. PubMed ID: 33840889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-Nitrogen-Carbon Electrocatalysts for CO
    Delafontaine L; Asset T; Atanassov P
    ChemSusChem; 2020 Apr; 13(7):1688-1698. PubMed ID: 31961996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient hydrogen production from ethanol and glycerol by vapour-phase reforming processes with new cobalt-based catalysts.
    Pereira EB; de la Piscina PR; Homs N
    Bioresour Technol; 2011 Feb; 102(3):3419-23. PubMed ID: 21044836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical study on the gas-phase reaction mechanism between nickel monoxide and methane for syngas production.
    Yang HQ; Qin S; Qin S; Hu CW
    J Comput Chem; 2009 Apr; 30(6):847-63. PubMed ID: 19165774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dry reforming of methane with CO2 on an electron-activated iron catalytic bed.
    Labrecque R; Lavoie JM
    Bioresour Technol; 2011 Dec; 102(24):11244-8. PubMed ID: 22001055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Review on Bimetallic Nickel-Based Catalysts for CO
    Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S
    Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials.
    Stöcker M
    Angew Chem Int Ed Engl; 2008; 47(48):9200-11. PubMed ID: 18937235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.