These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 18188988)
1. Synergetic inactivation of microorganisms in drinking water by short-term free chlorination and subsequent monochloramination. Zhang XJ; Chen C; Wang Y Biomed Environ Sci; 2007 Oct; 20(5):373-80. PubMed ID: 18188988 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous control of microorganisms and disinfection by-products by sequential chlorination. Chen C; Zhang XJ; He WJ; Han HD Biomed Environ Sci; 2007 Apr; 20(2):119-25. PubMed ID: 17624185 [TBL] [Abstract][Full Text] [Related]
3. [Simultaneous control of microorganism, disinfection by-products and bio-stability by sequential chlorination disinfection]. Chen C; Zhang XJ; He WJ; Han HD; Zhu LX; Wang Y; Liu J Huan Jing Ke Xue; 2006 Jan; 27(1):74-9. PubMed ID: 16599124 [TBL] [Abstract][Full Text] [Related]
4. Formation of organic chloramines during water disinfection: chlorination versus chloramination. Lee W; Westerhoff P Water Res; 2009 May; 43(8):2233-9. PubMed ID: 19269665 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine. Bougeard CM; Goslan EH; Jefferson B; Parsons SA Water Res; 2010 Feb; 44(3):729-40. PubMed ID: 19910014 [TBL] [Abstract][Full Text] [Related]
6. [Disinfection by-products reduction of combined disinfection by chlorine and monochloramines in distribution system]. Liu J; Chen C; Zhang XJ Huan Jing Ke Xue; 2009 Sep; 30(9):2538-42. PubMed ID: 19927800 [TBL] [Abstract][Full Text] [Related]
7. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine. Hong H; Xiong Y; Ruan M; Liao F; Lin H; Liang Y Sci Total Environ; 2013 Feb; 444():196-204. PubMed ID: 23271145 [TBL] [Abstract][Full Text] [Related]
8. Chlorination and monochloramination of 3-aminophenol: kinetics and formation of first by-products. Abou Mehrez O; Dossier-Berne F; Legube B Environ Technol; 2015; 36(17):2255-63. PubMed ID: 25741590 [TBL] [Abstract][Full Text] [Related]
9. Tradeoffs between pathogen inactivation and disinfection byproduct formation during sequential chlorine and chloramine disinfection for wastewater reuse. Furst KE; Pecson BM; Webber BD; Mitch WA Water Res; 2018 Oct; 143():579-588. PubMed ID: 30015098 [TBL] [Abstract][Full Text] [Related]
10. Chlorination and chloramination of aminophenols in aqueous solution: oxidant demand and by-product formation. Mehrez OA; Dossier-Berne F; Legube B Environ Technol; 2015; 36(1-4):310-6. PubMed ID: 25514132 [TBL] [Abstract][Full Text] [Related]
11. Catalytic destruction of chloramine to nitrogen using chlorination and activated carbon--case study. Kochany J; Lipczynska-Kochany E Water Environ Res; 2008 Apr; 80(4):339-45. PubMed ID: 18536485 [TBL] [Abstract][Full Text] [Related]
12. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine. Zhang T; Xu B; Wang A; Cui C Chemosphere; 2018 Mar; 195():673-682. PubMed ID: 29289012 [TBL] [Abstract][Full Text] [Related]
13. [Use of two-points-short-term free chlorine plus chloramines disinfection process in conventional treatments of water supply]. Liu J; Chen C; Zhang XJ; Wang Y Huan Jing Ke Xue; 2008 Dec; 29(12):3368-71. PubMed ID: 19256369 [TBL] [Abstract][Full Text] [Related]
14. Comparison of monochloramination and chlorination of 1,3-diphenylguandine (DPG): Kinetics, transformation products, and cell-based in-vitro testing. Ying L; Marques Dos Santos M; Jia S; Li C; Lee THY; Mensah AT; Snyder SA Sci Total Environ; 2024 Jan; 906():167743. PubMed ID: 37838050 [TBL] [Abstract][Full Text] [Related]
15. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination. Al-Gabr HM; Zheng T; Yu X Sci Total Environ; 2013 Oct; 463-464():525-9. PubMed ID: 23831798 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive assessment of chlorination disinfection on microplastic-associated biofilms. Thi Nguyen H; Choi W; Jeong S; Bae H; Oh S; Cho K J Hazard Mater; 2024 Aug; 474():134751. PubMed ID: 38820748 [TBL] [Abstract][Full Text] [Related]
17. Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter. Ye T; Xu B; Wang Z; Zhang TY; Hu CY; Lin L; Xia SJ; Gao NY Water Res; 2014 Dec; 66():390-398. PubMed ID: 25240119 [TBL] [Abstract][Full Text] [Related]
18. Chlorination and chloramination of benzophenone-3 and benzophenone-4 UV filters. Yang P; Kong D; Ji Y; Lu J; Yin X; Zhou Q Ecotoxicol Environ Saf; 2018 Nov; 163():528-535. PubMed ID: 30077149 [TBL] [Abstract][Full Text] [Related]
19. Effect of some parameters on the formation of chloroform during chloramination of aqueous solutions of resorcinol. Cimetiere N; Dossier-Berne F; De Laat J Water Res; 2010 Aug; 44(15):4497-504. PubMed ID: 20591462 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of Bacillus subtilis spores with ozone and monochloramine. Larson MA; Mariñas BJ Water Res; 2003 Feb; 37(4):833-44. PubMed ID: 12531265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]