These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18189132)

  • 1. Oriented epitaxial growth of amyloid fibrils of the N27C mutant beta 25-35 peptide.
    Karsai A; Murvai U; Soós K; Penke B; Kellermayer MS
    Eur Biophys J; 2008 Sep; 37(7):1133-7. PubMed ID: 18189132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epitaxial assembly dynamics of mutant amyloid β25-35_N27C fibrils explored with time-resolved scanning force microscopy.
    Kellermayer MS; Murvai Ü; Horváth A; Lászlóffi E; Soós K; Penke B
    Biophys Chem; 2013 Dec; 184():54-61. PubMed ID: 24061043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils.
    Murvai Ü; Somkuti J; Smeller L; Penke B; Kellermayer MS
    Biochim Biophys Acta; 2015 May; 1854(5):327-32. PubMed ID: 25600136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the beta-sheet-breaker peptide LPFFD on oriented network of amyloid β25-35 fibrils.
    Murvai U; Soós K; Penke B; Kellermayer MS
    J Mol Recognit; 2011; 24(3):453-60. PubMed ID: 21504023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Size of Folding Nuclei of Fibrils Formed from Recombinant Aβ(1-40) Peptide.
    Grigorashvili EI; Selivanova OM; Dovidchenko NV; Dzhus UF; Mikhailina AO; Suvorina MY; Marchenkov VV; Surin AK; Galzitskaya OV
    Biochemistry (Mosc); 2016 May; 81(5):538-47. PubMed ID: 27297904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomechanical properties of human prion protein amyloid as probed by force spectroscopy.
    Ganchev DN; Cobb NJ; Surewicz K; Surewicz WK
    Biophys J; 2008 Sep; 95(6):2909-15. PubMed ID: 18539633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the nature interactions of β-amyloid protein by a nanoprobe method.
    Caballero L; Mena J; Morales-Alvarez A; Kogan MJ; Melo F
    Langmuir; 2015; 31(1):299-306. PubMed ID: 25486322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct evidence for self-propagation of different amyloid-β fibril conformations.
    Spirig T; Ovchinnikova O; Vagt T; Glockshuber R
    Neurodegener Dis; 2014; 14(3):151-9. PubMed ID: 25300967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Aβ
    Bonhommeau S; Talaga D; Hunel J; Cullin C; Lecomte S
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1771-1774. PubMed ID: 28071842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution.
    Klinger AL; Kiselar J; Ilchenko S; Komatsu H; Chance MR; Axelsen PH
    Biochemistry; 2014 Dec; 53(49):7724-34. PubMed ID: 25382225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical ordering of amyloid fibrils on the mica surface.
    Zhou X; Zhang Y; Zhang F; Pillai S; Liu J; Li R; Dai B; Li B; Zhang Y
    Nanoscale; 2013 Jun; 5(11):4816-22. PubMed ID: 23613010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the β-sheet content on the mechanical properties of aggregates during amyloid fibrillization.
    Ruggeri FS; Adamcik J; Jeong JS; Lashuel HA; Mezzenga R; Dietler G
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2462-6. PubMed ID: 25588987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alzheimer's disease amyloid β-protein mutations and deletions that define neuronal binding/internalization as early stage nonfibrillar/fibrillar aggregates and late stage fibrils.
    Poduslo JF; Howell KG; Olson NC; Ramirez-Alvarado M; Kandimalla KK
    Biochemistry; 2012 May; 51(19):3993-4003. PubMed ID: 22545812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of histidines in amyloid β fibril assembly.
    Brännström K; Islam T; Sandblad L; Olofsson A
    FEBS Lett; 2017 Apr; 591(8):1167-1175. PubMed ID: 28267202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-mechanical characterization of disassembling amyloid fibrils using the Peak Force QNM method.
    Wang W; Guo Z; Sun J; Li Z
    Biopolymers; 2017 Feb; 107(2):61-69. PubMed ID: 27696370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique molecular signatures of Alzheimer's disease amyloid β peptide mutations and deletion during aggregate/oligomer/fibril formation.
    Poduslo JF; Howell KG
    J Neurosci Res; 2015 Mar; 93(3):410-23. PubMed ID: 25377128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-Driven Dynamical Crossover in the Phenylalanine Side-Chain from the Hydrophobic Core of Amyloid Fibrils Detected by
    Vugmeyster L; Ostrovsky D; Hoatson GL; Qiang W; Falconer IB
    J Phys Chem B; 2017 Aug; 121(30):7267-7275. PubMed ID: 28699757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method.
    Adamcik J; Lara C; Usov I; Jeong JS; Ruggeri FS; Dietler G; Lashuel HA; Hamley IW; Mezzenga R
    Nanoscale; 2012 Aug; 4(15):4426-9. PubMed ID: 22688679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoprobing of the effect of Cu(2+) cations on misfolding, interaction and aggregation of amyloid β peptide.
    Lv Z; Condron MM; Teplow DB; Lyubchenko YL
    J Neuroimmune Pharmacol; 2013 Mar; 8(1):262-73. PubMed ID: 23143330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic Force Microscopy Characterization of Protein Fibrils Formed by the Amyloidogenic Region of the Bacterial Protein MinE on Mica and a Supported Lipid Bilayer.
    Chiang YL; Chang YC; Chiang IC; Mak HM; Hwang IS; Shih YL
    PLoS One; 2015; 10(11):e0142506. PubMed ID: 26562523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.