BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18189139)

  • 1. The swimming performance of brown trout and whitefish: the effects of exercise on Ca2+ handling and oxidative capacity of swimming muscles.
    Anttila K; Järvilehto M; Mänttäri S
    J Comp Physiol B; 2008 May; 178(4):465-75. PubMed ID: 18189139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of different training protocols on Ca2+ handling and oxidative capacity in skeletal muscle of Atlantic salmon (Salmo salar L.).
    Anttila K; Mänttäri S; Järvilehto M
    J Exp Biol; 2006 Aug; 209(Pt 15):2971-8. PubMed ID: 16857881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural differences and histochemical characteristics in swimming muscles between wild and reared Atlantic salmon.
    Anttila K; Mänttäri S
    Acta Physiol (Oxf); 2009 Jun; 196(2):249-57. PubMed ID: 18945272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis).
    Cunningham JL; McGeer JC
    Aquat Toxicol; 2016 Apr; 173():9-18. PubMed ID: 26816336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ryanodine and dihydropyridine receptor binding in ventricular cardiac muscle of fish with different temperature preferences.
    Tiitu V; Vornanen M
    J Comp Physiol B; 2003 Jun; 173(4):285-91. PubMed ID: 12664089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic exercise training improves Ca2+ handling and redox status of skeletal muscle in mice.
    Ferreira JC; Bacurau AV; Bueno CR; Cunha TC; Tanaka LY; Jardim MA; Ramires PR; Brum PC
    Exp Biol Med (Maywood); 2010 Apr; 235(4):497-505. PubMed ID: 20407082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How well do muscle biomechanics predict whole-animal locomotor performance? The role of Ca2+ handling.
    Seebacher F; Pollard SR; James RS
    J Exp Biol; 2012 Jun; 215(Pt 11):1847-53. PubMed ID: 22573763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of training on functional variables of muscles in reared Atlantic salmon Salmo salar smolts: connection to downstream migration pattern.
    Anttila K; Jokikokko E; Erkinaro J; Järvilehto M; Mänttäri S
    J Fish Biol; 2011 Feb; 78(2):552-66. PubMed ID: 21284634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise training in skeletal muscle of brook trout (Salvelinus fontinalis).
    Johnston IA; Moon TW
    J Exp Biol; 1980 Aug; 87():177-94. PubMed ID: 7420013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of concurrent training on oxidative capacity in rat gastrocnemius muscle.
    Furrer R; DE Haan A; Bravenboer N; Kos D; Lips P; Jaspers RT
    Med Sci Sports Exerc; 2013 Sep; 45(9):1674-83. PubMed ID: 23475169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sustained swimming on the red and white muscle transcriptome of rainbow trout (Oncorhynchus mykiss) fed a carbohydrate-rich diet.
    Magnoni LJ; Crespo D; Ibarz A; Blasco J; Fernández-Borràs J; Planas JV
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Nov; 166(3):510-21. PubMed ID: 23968867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of training on lipid metabolism in swimming muscles of sea trout (Salmo trutta).
    Anttila K; Jäntti M; Mänttäri S
    J Comp Physiol B; 2010 Jun; 180(5):707-14. PubMed ID: 20135129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in locomotor performance between individuals: importance of parvalbumin, calcium handling and metabolism.
    Seebacher F; Walter I
    J Exp Biol; 2012 Feb; 215(Pt 4):663-70. PubMed ID: 22279074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of prolonged exercise training on swimming performance and the underlying biochemical mechanisms in juvenile common carp (Cyprinus carpio).
    He W; Xia W; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Oct; 166(2):308-15. PubMed ID: 23838144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of sustained exercise and hypoxia upon oxygen tensions in the red muscle of rainbow trout.
    McKenzie DJ; Wong S; Randall DJ; Egginton S; Taylor EW; Farrell AP
    J Exp Biol; 2004 Oct; 207(Pt 21):3629-37. PubMed ID: 15371471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in effects of various training regimens on metabolism of skeletal muscles.
    Viru M
    J Sports Med Phys Fitness; 1994 Sep; 34(3):217-27. PubMed ID: 7830384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise-induced modulation of calcineurin activity parallels the time course of myofibre transitions.
    Grondard C; Biondi O; Pariset C; Lopes P; Deforges S; Lécolle S; Gaspera BD; Gallien CL; Chanoine C; Charbonnier F
    J Cell Physiol; 2008 Jan; 214(1):126-35. PubMed ID: 17559060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of dihydropyridine receptor levels in skeletal and cardiac muscle by exercise training.
    Saborido A; Molano F; Moro G; Megías A
    Pflugers Arch; 1995 Jan; 429(3):364-9. PubMed ID: 7761260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of low-speed swimming following exhaustive exercise on metabolic recovery and swimming performance in brook trout (Salvelinus fontinalis).
    Kieffer JD; Kassie RS; Taylor SG
    Physiol Biochem Zool; 2011; 84(4):385-93. PubMed ID: 21743252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic exercise training improves skeletal muscle function and Ca2+ handling-related protein expression in sympathetic hyperactivity-induced heart failure.
    Bueno CR; Ferreira JC; Pereira MG; Bacurau AV; Brum PC
    J Appl Physiol (1985); 2010 Sep; 109(3):702-9. PubMed ID: 20595538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.