BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 18189283)

  • 1. A flow cytometer for the measurement of Raman spectra.
    Watson DA; Brown LO; Gaskill DF; Naivar M; Graves SW; Doorn SK; Nolan JP
    Cytometry A; 2008 Feb; 73(2):119-28. PubMed ID: 18189283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single cell analysis using surface enhanced Raman scattering (SERS) tags.
    Nolan JP; Duggan E; Liu E; Condello D; Dave I; Stoner SA
    Methods; 2012 Jul; 57(3):272-9. PubMed ID: 22498143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral measurements of large particles by flow cytometry.
    Watson DA; Gaskill DF; Brown LO; Doorn SK; Nolan JP
    Cytometry A; 2009 May; 75(5):460-4. PubMed ID: 19199345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry.
    MacLaughlin CM; Mullaithilaga N; Yang G; Ip SY; Wang C; Walker GC
    Langmuir; 2013 Feb; 29(6):1908-19. PubMed ID: 23360230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single particle high resolution spectral analysis flow cytometry.
    Goddard G; Martin JC; Naivar M; Goodwin PM; Graves SW; Habbersett R; Nolan JP; Jett JH
    Cytometry A; 2006 Aug; 69(8):842-51. PubMed ID: 16969803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman scattering (SERS) cytometry.
    Nolan JP; Sebba DS
    Methods Cell Biol; 2011; 102():515-32. PubMed ID: 21704852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution spectral analysis of individual SERS-active nanoparticles in flow.
    Goddard G; Brown LO; Habbersett R; Brady CI; Martin JC; Graves SW; Freyer JP; Doorn SK
    J Am Chem Soc; 2010 May; 132(17):6081-90. PubMed ID: 20143808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging.
    Stürzl N; Lebedkin S; Klumpp S; Hennrich F; Kappes MM
    Anal Chem; 2013 May; 85(9):4554-9. PubMed ID: 23521587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light.
    Feng S; Chen R; Lin J; Pan J; Wu Y; Li Y; Chen J; Zeng H
    Biosens Bioelectron; 2011 Mar; 26(7):3167-74. PubMed ID: 21227679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow cytometer in the infrared: inexpensive modifications to a commercial instrument.
    Stewart CC; Woodring ML; Podniesinski E; Gray B
    Cytometry A; 2005 Oct; 67(2):104-11. PubMed ID: 16163692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free flow cytometry using multiplex coherent anti-Stokes Raman scattering (MCARS) for the analysis of biological specimens.
    Camp CH; Yegnanarayanan S; Eftekhar AA; Adibi A
    Opt Lett; 2011 Jun; 36(12):2309-11. PubMed ID: 21686003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral flow cytometry.
    Nolan JP; Condello D
    Curr Protoc Cytom; 2013 Jan; Chapter 1():1.27.1-1.27.13. PubMed ID: 23292705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex coherent anti-Stokes Raman scattering (MCARS) for chemically sensitive, label-free flow cytometry.
    Camp CH; Yegnanarayanan S; Eftekhar AA; Sridhar H; Adibi A
    Opt Express; 2009 Dec; 17(25):22879-89. PubMed ID: 20052214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow cytometer for measurement of the light scattering of viral and other submicroscopic particles.
    Steen HB
    Cytometry A; 2004 Feb; 57(2):94-9. PubMed ID: 14750130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible and near infrared fluorescence spectral flow cytometry.
    Nolan JP; Condello D; Duggan E; Naivar M; Novo D
    Cytometry A; 2013 Mar; 83(3):253-64. PubMed ID: 23225549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow cytometer based on triggered supercontinuum laser illumination.
    Rongeat N; Leproux P; Couderc V; Brunel P; Ledroit S; Cremien D; Hilaire S; Huss G; Nérin P
    Cytometry A; 2012 Jul; 81(7):611-7. PubMed ID: 22573492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow Cytometry Analysis to Identify Human CD8
    Flynn J; Gorry P
    Methods Mol Biol; 2019; 2048():1-13. PubMed ID: 31396924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelength-scanned surface-enhanced Raman excitation spectroscopy.
    McFarland AD; Young MA; Dieringer JA; Van Duyne RP
    J Phys Chem B; 2005 Jun; 109(22):11279-85. PubMed ID: 16852377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.