BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 18189301)

  • 1. In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous.
    Swindle KE; Hamilton PD; Ravi N
    J Biomed Mater Res A; 2008 Dec; 87(3):656-65. PubMed ID: 18189301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes.
    Santhanam S; Liang J; Struckhoff J; Hamilton PD; Ravi N
    Acta Biomater; 2016 Oct; 43():327-337. PubMed ID: 27481290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-component in situ forming supramolecular hydrogels as advanced biomaterials in vitreous body surgery.
    Böhm I; Strotmann F; Koopmans C; Wolf I; Galla HJ; Ritter H
    Macromol Biosci; 2012 Apr; 12(4):432-7. PubMed ID: 22323438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial vitreous replacements.
    Soman N; Banerjee R
    Biomed Mater Eng; 2003; 13(1):59-74. PubMed ID: 12652023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of an injectable in situ gelation biomaterials for vitreous substitute.
    Annaka M; Mortensen K; Vigild ME; Matsuura T; Tsuji S; Ueda T; Tsujinaka H
    Biomacromolecules; 2011 Nov; 12(11):4011-21. PubMed ID: 21988210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly transparent tri-polymer complex
    Yadav I; Purohit SD; Singh H; Das N; Roy P; Mishra NC
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34525462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rabbit study of an in situ forming hydrogel vitreous substitute.
    Swindle-Reilly KE; Shah M; Hamilton PD; Eskin TA; Kaushal S; Ravi N
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4840-6. PubMed ID: 19324846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and viscoelastic characterization of novel hydrogels generated via photopolymerization of 1,2-epoxy-5-hexene modified poly(vinyl alcohol) for use in tissue replacement.
    Bader RA
    Acta Biomater; 2008 Jul; 4(4):967-75. PubMed ID: 18359671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric hydrogel as a vitreous substitute: current research, challenges, and future directions.
    Wang T; Ran R; Ma Y; Zhang M
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34038870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Artificial vitreous body: Strategies for vitreous body substitutes].
    Mariacher S; Szurman P
    Ophthalmologe; 2015 Jul; 112(7):572-9. PubMed ID: 26077344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-responsive hydrogels that can shrink or swell.
    Murakami Y; Maeda M
    Biomacromolecules; 2005; 6(6):2927-9. PubMed ID: 16283709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable polymers from renewable sources: rheological characterization of hemicellulose-based hydrogels.
    Söderqvist Lindblad M; Albertsson AC; Ranucci E; Laus M; Giani E
    Biomacromolecules; 2005; 6(2):684-90. PubMed ID: 15762630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute.
    Schramm C; Spitzer MS; Henke-Fahle S; Steinmetz G; Januschowski K; Heiduschka P; Geis-Gerstorfer J; Biedermann T; Bartz-Schmidt KU; Szurman P
    Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):613-21. PubMed ID: 22199245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels.
    Zhou C; Wu Q; Yue Y; Zhang Q
    J Colloid Interface Sci; 2011 Jan; 353(1):116-23. PubMed ID: 20932533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel vitreous substitutes: the next frontier in vitreoretinal surgery.
    Schulz A; Januschowski K; Szurman P
    Curr Opin Ophthalmol; 2021 May; 32(3):288-293. PubMed ID: 33630788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macro- and Microscale Properties of the Vitreous Humor to Inform Substitute Design and Intravitreal Biotransport.
    Tram NK; Maxwell CJ; Swindle-Reilly KE
    Curr Eye Res; 2021 Apr; 46(4):429-444. PubMed ID: 33040616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Using Biomaterials as Vitreous Substitutes.
    Su X; Tan MJ; Li Z; Wong M; Rajamani L; Lingam G; Loh XJ
    Biomacromolecules; 2015 Oct; 16(10):3093-102. PubMed ID: 26366887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitreous substitutes: a comprehensive review.
    Kleinberg TT; Tzekov RT; Stein L; Ravi N; Kaushal S
    Surv Ophthalmol; 2011; 56(4):300-23. PubMed ID: 21601902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation study of P (VP-co-HEMA) hydrogels: effect of water content on equilibrium structures and mechanical properties.
    Lee SG; Brunello GF; Jang SS; Bucknall DG
    Biomaterials; 2009 Oct; 30(30):6130-41. PubMed ID: 19656562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.