BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 18189301)

  • 21. Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes.
    Raia NR; Jia D; Ghezzi CE; Muthukumar M; Kaplan DL
    Biomaterials; 2020 Mar; 233():119729. PubMed ID: 31927250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Refractive shifts in four selected artificial vitreous substitutes based on Gullstrand-Emsley and Liou-Brennan schematic eyes.
    Gao Q; Chen X; Ge J; Liu Y; Jiang Z; Lin Z; Liu Y
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3529-34. PubMed ID: 19264881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of Fourier transform infrared spectrometry for monitoring the retention of polymers in the vitreous humour.
    Dalton PD; Jefferson A; Hong Y; Chirila TV; Vijayasekaran S; Tahija SG
    Biomed Mater Eng; 1995; 5(3):185-93. PubMed ID: 8555968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards an ideal biomaterial for vitreous replacement: Historical overview and future trends.
    Baino F
    Acta Biomater; 2011 Mar; 7(3):921-35. PubMed ID: 21050899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vitreous substitutes: An overview of the properties, importance, and development.
    Yadav I; Purohit SD; Singh H; Bhushan S; Yadav MK; Velpandian T; Chawla R; Hazra S; Mishra NC
    J Biomed Mater Res B Appl Biomater; 2021 Aug; 109(8):1156-1176. PubMed ID: 33319466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyacrylamide hydrogel differences: getting rid of the confusion.
    Narins RS; Schmidt R
    J Drugs Dermatol; 2011 Dec; 10(12):1370-5. PubMed ID: 22134560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility.
    Vermonden T; Fedorovich NE; van Geemen D; Alblas J; van Nostrum CF; Dhert WJ; Hennink WE
    Biomacromolecules; 2008 Mar; 9(3):919-26. PubMed ID: 18288801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antifouling properties of tough gels against barnacles in a long-term marine environment experiment.
    Murosaki T; Noguchi T; Hashimoto K; Kakugo A; Kurokawa T; Saito J; Chen YM; Furukawa H; Gong JP
    Biofouling; 2009 Oct; 25(7):657-66. PubMed ID: 20183124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temoporfin-loaded liposomal gels: viscoelastic properties and in vitro skin penetration.
    Dragicevic-Curic N; Winter S; Stupar M; Milic J; Krajisnik D; Gitter B; Fahr A
    Int J Pharm; 2009 May; 373(1-2):77-84. PubMed ID: 19429291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Michael-type addition reactions for the in situ formation of poly(vinyl alcohol)-based hydrogels.
    Tortora M; Cavalieri F; Chiessi E; Paradossi G
    Biomacromolecules; 2007 Jan; 8(1):209-14. PubMed ID: 17206809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymers of 1-vinyl-2-pyrrolidinone as potential vitreous substitutes: physical selection.
    Hong Y; Chirila TV; Cuypers MJ; Constable IJ
    J Biomater Appl; 1996 Oct; 11(2):135-81. PubMed ID: 8913849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical stimulation and evaluation of hydrogel biomaterial.
    Lu J; Laudinet J; Williams S
    Biomed Mater Eng; 2008; 18(4-5):335-7. PubMed ID: 19065044
    [No Abstract]   [Full Text] [Related]  

  • 33. Alginate- and Hyaluronic Acid-Based Hydrogels as Vitreous Substitutes: An In Vitro Evaluation.
    Schulz A; Rickmann A; Wahl S; Germann A; Stanzel BV; Januschowski K; Szurman P
    Transl Vis Sci Technol; 2020 Dec; 9(13):34. PubMed ID: 33384888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127.
    Lin CH; Lin WC; Yang MC
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):36-44. PubMed ID: 19188049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration.
    Lee SY; Pereira BP; Yusof N; Selvaratnam L; Yu Z; Abbas AA; Kamarul T
    Acta Biomater; 2009 Jul; 5(6):1919-25. PubMed ID: 19289306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 'Living' controlled in situ gelling systems: thiol-disulfide exchange method toward tailor-made biodegradable hydrogels.
    Wu DC; Loh XJ; Wu YL; Lay CL; Liu Y
    J Am Chem Soc; 2010 Nov; 132(43):15140-3. PubMed ID: 20929223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Desired properties of polymeric hydrogel vitreous substitute.
    Qu S; Tang Y; Ning Z; Zhou Y; Wu H
    Biomed Pharmacother; 2024 Mar; 172():116154. PubMed ID: 38306844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly(1-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: histopathological evaluation in the animal eye.
    Vijayasekaran S; Chirila TV; Hong Y; Tahija SG; Dalton PD; Constable IJ; McAllister IL
    J Biomater Sci Polym Ed; 1996; 7(8):685-96. PubMed ID: 8639477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of fracture energy of high strength double network hydrogels.
    Tanaka Y; Kuwabara R; Na YH; Kurokawa T; Gong JP; Osada Y
    J Phys Chem B; 2005 Jun; 109(23):11559-62. PubMed ID: 16852418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties.
    Sharif-Kashani P; Hubschman JP; Sassoon D; Kavehpour HP
    J Biomech; 2011 Feb; 44(3):419-23. PubMed ID: 21040921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.