BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 18189310)

  • 1. 3D-reconstruction and functional properties of GFP-positive and GFP-negative granule cells in the fascia dentata of the Thy1-GFP mouse.
    Vuksic M; Del Turco D; Bas Orth C; Burbach GJ; Feng G; Müller CM; Schwarzacher SW; Deller T
    Hippocampus; 2008; 18(4):364-75. PubMed ID: 18189310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct visualization of glucocorticoid receptor positive cells in the hippocampal regions using green fluorescent protein transgenic mice.
    Nishi M; Usuku T; Itose M; Fujikawa K; Hosokawa K; Matsuda KI; Kawata M
    Neuroscience; 2007 Jun; 146(4):1555-60. PubMed ID: 17467182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cytoarchitecture of the dorsal cochlear nucleus in the 3-month- and 26-month-old C57BL/6 mouse: a Golgi impregnation study.
    Browner RH; Baruch A
    J Comp Neurol; 1982 Oct; 211(2):115-38. PubMed ID: 7174885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlated axonal sprouting and dendritic spine formation during kainate-induced neuronal morphogenesis in the dentate gyrus of adult mice.
    Suzuki F; Makiura Y; Guilhem D; Sørensen JC; Onteniente B
    Exp Neurol; 1997 May; 145(1):203-13. PubMed ID: 9184122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracerebral transplants of the rat fascia dentata: a Golgi/electron microscope study of dentate granule cells.
    Frotscher M; Zimmer J
    J Comp Neurol; 1986 Apr; 246(2):181-90. PubMed ID: 3958251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis.
    Laplagne DA; Kamienkowski JE; Espósito MS; Piatti VC; Zhao C; Gage FH; Schinder AF
    Eur J Neurosci; 2007 May; 25(10):2973-81. PubMed ID: 17509085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unilateral entorhinal denervation leads to long-lasting dendritic alterations of mouse hippocampal granule cells.
    Vuksic M; Del Turco D; Vlachos A; Schuldt G; Müller CM; Schneider G; Deller T
    Exp Neurol; 2011 Aug; 230(2):176-85. PubMed ID: 21536031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei.
    Uusisaari M; Obata K; Knöpfel T
    J Neurophysiol; 2007 Jan; 97(1):901-11. PubMed ID: 17093116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic remodeling of dentate granule cells following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    Exp Neurol; 1996 Sep; 141(1):145-53. PubMed ID: 8797677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid integration of young newborn dentate gyrus granule cells in the adult hippocampal circuitry.
    Ide Y; Fujiyama F; Okamoto-Furuta K; Tamamaki N; Kaneko T; Hisatsune T
    Eur J Neurosci; 2008 Dec; 28(12):2381-92. PubMed ID: 19087169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Quantitative studies on the neuron structure of the rat fascia dentata].
    Frimmel G; Ost HM; Wenzel J
    Z Mikrosk Anat Forsch; 1975; 89(3):495-511. PubMed ID: 1229245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purkinje cell dendrites grow in alignment with Bergmann glia.
    Lordkipanidze T; Dunaevsky A
    Glia; 2005 Aug; 51(3):229-34. PubMed ID: 15800897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenic mice expressing a fluorescent in vivo label in a distinct subpopulation of neocortical layer 5 pyramidal cells.
    Akemann W; Zhong YM; Ichinohe N; Rockland KS; Knöpfel T
    J Comp Neurol; 2004 Nov; 480(1):72-88. PubMed ID: 15515023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal hyperactivity sustains the basal dendrites of immature dentate granule cells: time-lapse confocal analysis using hippocampal slice cultures.
    Nakahara S; Tamura M; Matsuki N; Koyama R
    Hippocampus; 2009 Apr; 19(4):379-91. PubMed ID: 19004014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behaviorally evoked transient reorganization of hippocampal spines.
    Kitanishi T; Ikegaya Y; Matsuki N
    Eur J Neurosci; 2009 Aug; 30(4):560-6. PubMed ID: 19674085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of afferent innervation and neuronal activity in dendritic development and spine maturation of fascia dentata granule cells.
    Frotscher M; Drakew A; Heimrich B
    Cereb Cortex; 2000 Oct; 10(10):946-51. PubMed ID: 11007545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recurrent excitation of granule cells with basal dendrites and low interneuron density and inhibitory postsynaptic current frequency in the dentate gyrus of macaque monkeys.
    Austin JE; Buckmaster PS
    J Comp Neurol; 2004 Aug; 476(3):205-18. PubMed ID: 15269966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus.
    Claiborne BJ; Amaral DG; Cowan WM
    J Comp Neurol; 1990 Dec; 302(2):206-19. PubMed ID: 2289972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density.
    Eadie BD; Redila VA; Christie BR
    J Comp Neurol; 2005 May; 486(1):39-47. PubMed ID: 15834963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological variability is a characteristic feature of granule cells in the primate fascia dentata: a combined Golgi/electron microscope study.
    Seress L; Frotscher M
    J Comp Neurol; 1990 Mar; 293(2):253-67. PubMed ID: 19189715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.