These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 18189362)
1. Structure/function relationships of several biopolymers as related to invertase stability in dehydrated systems. Santagapita PR; Brizuela LG; Mazzobre MF; Ramirez HL; Corti HR; Santana RV; Buera MP Biomacromolecules; 2008 Feb; 9(2):741-7. PubMed ID: 18189362 [TBL] [Abstract][Full Text] [Related]
2. Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems. Santagapita PR; Mazzobre MF; Buera MP; Ramirez HL; Brizuela LG; Corti HR; Villalonga R Biotechnol Prog; 2015; 31(3):791-8. PubMed ID: 25736897 [TBL] [Abstract][Full Text] [Related]
3. Polyethylene glycol-based low generation dendrimers functionalized with β-cyclodextrin as cryo- and dehydro-protectant of catalase formulations. Santagapita PR; Mazzobre MF; Cruz AG; Corti HR; Villalonga R; Buera MP Biotechnol Prog; 2013; 29(3):786-95. PubMed ID: 23596101 [TBL] [Abstract][Full Text] [Related]
4. Formulation and drying of alginate beads for controlled release and stabilization of invertase. Santagapita PR; Mazzobre MF; Buera MP Biomacromolecules; 2011 Sep; 12(9):3147-55. PubMed ID: 21809830 [TBL] [Abstract][Full Text] [Related]
5. Extracellular β-fructofuranosidase from Fusarium graminearum: stability of the spray-dried enzyme in the presence of different carbohydrates. Gonçalves HB; Jorge JA; Oliveira WP; Souza CR; Guimarães LH J Microencapsul; 2013; 30(7):624-31. PubMed ID: 23489014 [TBL] [Abstract][Full Text] [Related]
6. Protective mechanism of stabilizing excipients against dehydration in the freeze-drying of proteins. Liao YH; Brown MB; Quader A; Martin GP Pharm Res; 2002 Dec; 19(12):1854-61. PubMed ID: 12523665 [TBL] [Abstract][Full Text] [Related]
7. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying. Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the stabilisation of freeze-dried lysozyme and the physical properties of the formulations. Liao YH; Brown MB; Martin GP Eur J Pharm Biopharm; 2004 Jul; 58(1):15-24. PubMed ID: 15207533 [TBL] [Abstract][Full Text] [Related]
9. The impact of drying method and formulation on the physical properties and stability of methionyl human growth hormone in the amorphous solid state. Abdul-Fattah AM; Lechuga-Ballesteros D; Kalonia DS; Pikal MJ J Pharm Sci; 2008 Jan; 97(1):163-84. PubMed ID: 17722086 [TBL] [Abstract][Full Text] [Related]
10. Stabilization effects of saccharides in protein formulations: A review of sucrose, trehalose, cyclodextrins and dextrans. Li J; Wang H; Wang L; Yu D; Zhang X Eur J Pharm Sci; 2024 Jan; 192():106625. PubMed ID: 37918545 [TBL] [Abstract][Full Text] [Related]
11. Glassy state and thermal inactivation of invertase and lactase in dried amorphous matrices. Schebor C; Burin L; Buera MP; Aguilera JM; Chirife J Biotechnol Prog; 1997; 13(6):857-63. PubMed ID: 9413144 [TBL] [Abstract][Full Text] [Related]
12. State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG). Pehkonen KS; Roos YH; Miao S; Ross RP; Stanton C J Appl Microbiol; 2008 Jun; 104(6):1732-43. PubMed ID: 18248378 [TBL] [Abstract][Full Text] [Related]
13. Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices. Lodato P; Se govia de Huergo M; Buera MP Appl Microbiol Biotechnol; 1999 Aug; 52(2):215-20. PubMed ID: 10499261 [TBL] [Abstract][Full Text] [Related]
14. Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods. Traffano-Schiffo MV; Castro-Giraldez M; Fito PJ; Santagapita PR Food Res Int; 2017 Oct; 100(Pt 1):296-303. PubMed ID: 28873691 [TBL] [Abstract][Full Text] [Related]
15. Comparison of melibiose and trehalose as stabilising excipients for spray-dried β-galactosidase formulations. Lipiäinen T; Räikkönen H; Kolu AM; Peltoniemi M; Juppo A Int J Pharm; 2018 May; 543(1-2):21-28. PubMed ID: 29567196 [TBL] [Abstract][Full Text] [Related]
16. Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody. Gitter JH; Geidobler R; Presser I; Winter G J Pharm Sci; 2018 Oct; 107(10):2538-2543. PubMed ID: 29890173 [TBL] [Abstract][Full Text] [Related]
17. Application of cyclodextrins in antibody microparticles: potentials for antibody protection in spray drying. Ramezani V; Vatanara A; Seyedabadi M; Nabi Meibodi M; Fanaei H Drug Dev Ind Pharm; 2017 Jul; 43(7):1103-1111. PubMed ID: 28276783 [TBL] [Abstract][Full Text] [Related]
18. Stabilization of the restriction enzyme EcoRI dried with trehalose and other selected glass-forming solutes. Rossi S; Buera MP; Moreno S; Chirife J Biotechnol Prog; 1997; 13(5):609-16. PubMed ID: 9336981 [TBL] [Abstract][Full Text] [Related]
19. In situ precipitation and vacuum drying of interferon alpha-2a: development of a single-step process for obtaining dry, stable protein formulation. Kumar V; Sharma VK; Kalonia DS Int J Pharm; 2009 Jan; 366(1-2):88-98. PubMed ID: 18824225 [TBL] [Abstract][Full Text] [Related]
20. Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying. Anchordoquy TJ; Izutsu KI; Randolph TW; Carpenter JF Arch Biochem Biophys; 2001 Jun; 390(1):35-41. PubMed ID: 11368512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]