These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Nonlinear absorption in biological tissue for high intensity focused ultrasound. Liu X; Li J; Gong X; Zhang D Ultrasonics; 2006 Dec; 44 Suppl 1():e27-30. PubMed ID: 16844166 [TBL] [Abstract][Full Text] [Related]
3. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media. Jing Y; Cleveland RO J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398 [TBL] [Abstract][Full Text] [Related]
4. Self-demodulation of high-frequency ultrasound. Vos HJ; Goertz DE; de Jong N J Acoust Soc Am; 2010 Mar; 127(3):1208-17. PubMed ID: 20329819 [TBL] [Abstract][Full Text] [Related]
5. Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code. Qiao S; Jackson E; Coussios CC; Cleveland RO J Acoust Soc Am; 2016 Sep; 140(3):2039. PubMed ID: 27914432 [TBL] [Abstract][Full Text] [Related]
7. Influence of ribs on the nonlinear sound field of therapeutic ultrasound. Li JL; Liu XZ; Zhang D; Gong XF Ultrasound Med Biol; 2007 Sep; 33(9):1413-20. PubMed ID: 17630093 [TBL] [Abstract][Full Text] [Related]
8. Harmonic ultrasound fields through layered liquid media. Li Y; Chen Q; Zagzebski J IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):146-52. PubMed ID: 15055804 [TBL] [Abstract][Full Text] [Related]
9. Temperature modes for nonlinear Gaussian beams. Myers MR; Soneson JE J Acoust Soc Am; 2009 Jul; 126(1):425-33. PubMed ID: 19603899 [TBL] [Abstract][Full Text] [Related]
10. Computational aspects in high intensity ultrasonic surgery planning. Pulkkinen A; Hynynen K Comput Med Imaging Graph; 2010 Jan; 34(1):69-78. PubMed ID: 19740625 [TBL] [Abstract][Full Text] [Related]
11. Multipulse technique exploiting the intermodulation of ultrasound waves in a nonlinear medium. Biagi E; Breschi L; Vannacci E; Masotti L IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):520-35. PubMed ID: 19411211 [TBL] [Abstract][Full Text] [Related]
12. Ultrasonic field modeling for immersed components using Gaussian beam superposition. Spies M Ultrasonics; 2007 May; 46(2):138-47. PubMed ID: 17335863 [TBL] [Abstract][Full Text] [Related]
13. Reduced harmonic representation for continuous wave, shock-producing focused beams. Christopher T IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):859-63. PubMed ID: 19406715 [TBL] [Abstract][Full Text] [Related]
14. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation. Hasani MH; Gharibzadeh S; Farjami Y; Tavakkoli J J Acoust Soc Am; 2013 Sep; 134(3):1775-90. PubMed ID: 23967912 [TBL] [Abstract][Full Text] [Related]
15. Thresholds for nonlinear effects in high- intensity focused ultrasound propagation and tissue heating. Soneson JE; Myers MR IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2450-9. PubMed ID: 21041132 [TBL] [Abstract][Full Text] [Related]
16. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. Yang X; Cleveland RO J Acoust Soc Am; 2005 Jan; 117(1):113-23. PubMed ID: 15704404 [TBL] [Abstract][Full Text] [Related]
17. Estimating acoustic peak pressure generated by ultrasound transducers from harmonic distortion level measurement. Matte GM; Borsboom JM; van Neer P; de Jong N Ultrasound Med Biol; 2008 Sep; 34(9):1528-32. PubMed ID: 18450363 [TBL] [Abstract][Full Text] [Related]
18. Modeling the radiation of ultrasonic phased-array transducers with Gaussian beams. Huang R; Schmerr LW; Sedov A IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Dec; 55(12):2692-702. PubMed ID: 19126493 [TBL] [Abstract][Full Text] [Related]