These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 1818979)

  • 1. Effects of linoleic acid supplementation on blood pressure and kinetics of red cell sodium transport: the Piove di Sacco Study.
    Semplicini A; Casiglia E; Marzola M; Ceolotto G; Businaro R; Olivieri O; Guarini P; Corrocher R; Martines C; Dal Palù C
    J Hypertens Suppl; 1991 Dec; 9(6):S310-1. PubMed ID: 1818979
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of short chain fatty acid supplementation on membrane electrolyte transport and blood pressure.
    MacIver DH; McNally PG; Ollerenshaw JD; Sheldon TA; Heagerty AM
    J Hum Hypertens; 1990 Oct; 4(5):485-90. PubMed ID: 2283638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of dietary linoleic acid on blood pressure and erythrocyte sodium transport.
    el Ashry A; Heagerty AM; Ollerenshaw JD; Thurston H
    J Hum Hypertens; 1989 Feb; 3(1):9-15. PubMed ID: 2724276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linoleic acid supplementation, membrane lipids and leucocyte sodium transport in normotensive humans.
    Robertson DA; Heagerty AM; Ollerenshaw JD; Swales JD
    J Hum Hypertens; 1989 Apr; 3(2):117-23. PubMed ID: 2760909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiovascular response and red cell membrane sodium transport in hypertensive cardiac hypertrophy.
    Saito T; Kai N; Yamamoto K; Iwata J; Deguchi F; Inagaki Y
    J Hum Hypertens; 1993 Oct; 7(5):485-9. PubMed ID: 8263890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dietary oleic, linoleic and alpha-linolenic acids on blood pressure, serum lipids, lipoproteins and the formation of eicosanoid precursors in patients with mild essential hypertension.
    Singer P; Jaeger W; Berger I; Barleben H; Wirth M; Richter-Heinrich E; Voigt S; Gödicke W
    J Hum Hypertens; 1990 Jun; 4(3):227-33. PubMed ID: 1972963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of red blood cell ion transport alterations and serum lipid abnormalities in Lyon genetically hypertensive rats.
    Zicha J; Dobesová Z; Kunes J; Vincent M
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1123-8. PubMed ID: 9365824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of manipulation of sodium balance on erythrocyte sodium transport.
    el Ashry A; Heagerty AM; Alton SM; Bing RF; Swales JD; Thurston H
    J Hum Hypertens; 1987 Sep; 1(2):105-11. PubMed ID: 3333521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte sodium-potassium co-transport in hypertension.
    de Zeeuw D; Jilderda JF; Tepper T
    Proc Eur Dial Transplant Assoc; 1983; 20():507-13. PubMed ID: 6657675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Membrane transport of sodium and lithium ions and arterial hypertension].
    Borowska A; Modrzejewski W
    Przegl Lek; 1984; 41(11):661-5. PubMed ID: 6396740
    [No Abstract]   [Full Text] [Related]  

  • 11. Sodium transport across the red cell membrane and pathogenesis of essential hypertension: perspectives.
    Duhm J; Behr J
    Klin Wochenschr; 1987; 65 Suppl 8():69-75. PubMed ID: 3599805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypotensive effect of increased dietary linoleic acid in mildly hypertensive humans.
    Fleischman AT; Bierenbaum ML; Stier A; Somol SH; Watson P; Naso AM
    J Med Soc N J; 1979 Mar; 76(3):181-3. PubMed ID: 286062
    [No Abstract]   [Full Text] [Related]  

  • 13. [A study of red cell sodium-lithium countertransport in affective disorders].
    Yoshimuta N; Nakayama K
    Seishin Shinkeigaku Zasshi; 1993; 95(1):30-57. PubMed ID: 8511218
    [No Abstract]   [Full Text] [Related]  

  • 14. Evidence against a circulating ouabain-like transport inhibitor as a cause of increased red cell sodium in essential hypertension.
    Millar JA; Bramley PM; Paulin JM; Simpson FO
    J Hypertens Suppl; 1984 Dec; 2(3):S461-3. PubMed ID: 6599699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace elements modify the activity of sodium transporting systems in erythrocyte membrane in patients with essential hypertension-preliminary study.
    Kedzierska K; Bober J; Ciechanowski K; Gołembiewska E; Kwiatkowska E; Noceń I; Dutkiewicz G; Chlubek D
    Nephrol Dial Transplant; 2005 Feb; 20(2):469-71. PubMed ID: 15673705
    [No Abstract]   [Full Text] [Related]  

  • 16. Influence of dietary linoleic acid on leucocyte sodium transport and blood pressure.
    Heagerty AM; Ollerenshaw JD; Robertson DI; Bing RF; Swales JD
    Br Med J (Clin Res Ed); 1986 Aug; 293(6542):295-7. PubMed ID: 3089491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of fusogen substances with the erythrocyte membrane.
    Pratsch L; Herrmann A; Arnold K
    Biomed Biochim Acta; 1984; 43(6):S85-7. PubMed ID: 6487285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper modifies the activity of sodium-transporting systems in erythrocyte membrane in patients with essential hypertension.
    Kedzierska K; Bober J; Ciechanowski K; Gołembiewska E; Kwiatkowska E; Noceń I; Dołegowska B; Dutkiewicz G; Chlubek D
    Biol Trace Elem Res; 2005 Oct; 107(1):21-32. PubMed ID: 16170219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Activity of the systems of transmembrane transport of Na+ (Na+-K+ ATPase, Na+-K+-Cl cotransport, Na+-Li+ countertransport and passive Na+ diffusion) in essential arterial hypertension].
    de la Sierra A; Coca A; Aguilera MT; Vives JL; Ingelmo M; Urbano-Márquez A
    Med Clin (Barc); 1988 Feb; 90(5):186-9. PubMed ID: 2832663
    [No Abstract]   [Full Text] [Related]  

  • 20. Erythrocyte Na+ transport systems in human and experimental genetic hypertension.
    Garay R; de Mendonça M; Meyer P
    Prog Clin Biol Res; 1982; 103 Pt B():127-39. PubMed ID: 7163217
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.