These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 18190181)
1. An adaptive time step scheme for a system of stochastic differential equations with multiple multiplicative noise: chemical Langevin equation, a proof of concept. Sotiropoulos V; Kaznessis YN J Chem Phys; 2008 Jan; 128(1):014103. PubMed ID: 18190181 [TBL] [Abstract][Full Text] [Related]
2. An adaptive stepsize method for the chemical Langevin equation. Ilie S; Teslya A J Chem Phys; 2012 May; 136(18):184101. PubMed ID: 22583271 [TBL] [Abstract][Full Text] [Related]
3. Variable time-stepping in the pathwise numerical solution of the chemical Langevin equation. Ilie S J Chem Phys; 2012 Dec; 137(23):234110. PubMed ID: 23267474 [TBL] [Abstract][Full Text] [Related]
4. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. Salis H; Kaznessis Y J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306 [TBL] [Abstract][Full Text] [Related]
6. How noise statistics impact models of enzyme cycles. Warmflash A; Adamson DN; Dinner AR J Chem Phys; 2008 Jun; 128(22):225101. PubMed ID: 18554058 [TBL] [Abstract][Full Text] [Related]
7. A variational approach to the stochastic aspects of cellular signal transduction. Lan Y; Wolynes PG; Papoian GA J Chem Phys; 2006 Sep; 125(12):124106. PubMed ID: 17014165 [TBL] [Abstract][Full Text] [Related]
8. Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics. Picchini U; Ditlevsen S; De Gaetano A Math Med Biol; 2008 Jun; 25(2):141-55. PubMed ID: 18504247 [TBL] [Abstract][Full Text] [Related]
9. Simulation of ammonium and chromium transport in porous media using coupling scheme of a numerical algorithm and a stochastic algorithm. Palanichamy J; Schüttrumpf H; Köngeter J; Becker T; Palani S Water Sci Technol; 2009; 59(8):1577-84. PubMed ID: 19403971 [TBL] [Abstract][Full Text] [Related]
10. Multiple time step diffusive Langevin dynamics for proteins. Eastman P; Doniach S Proteins; 1998 Feb; 30(3):215-27. PubMed ID: 9517537 [TBL] [Abstract][Full Text] [Related]
11. Integration of Langevin equations with multiplicative noise and the viability of field theories for absorbing phase transitions. Dornic I; Chaté H; Muñoz MA Phys Rev Lett; 2005 Mar; 94(10):100601. PubMed ID: 15783467 [TBL] [Abstract][Full Text] [Related]
12. Event-driven Brownian dynamics for hard spheres. Scala A; Voigtmann T; De Michele C J Chem Phys; 2007 Apr; 126(13):134109. PubMed ID: 17430018 [TBL] [Abstract][Full Text] [Related]
13. Model reduction of multiscale chemical langevin equations: a numerical case study. Sotiropoulos V; Contou-Carrere MN; Daoutidis P; Kaznessis YN IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):470-82. PubMed ID: 19644174 [TBL] [Abstract][Full Text] [Related]
14. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. Macnamara S; Bersani AM; Burrage K; Sidje RB J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893 [TBL] [Abstract][Full Text] [Related]
15. Numerical method for solving stochastic differential equations with Poissonian white shot noise. Kim C; Lee EK; Hänggi P; Talkner P Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011109. PubMed ID: 17677412 [TBL] [Abstract][Full Text] [Related]
16. Highly accurate tau-leaping methods with random corrections. Hu Y; Li T J Chem Phys; 2009 Mar; 130(12):124109. PubMed ID: 19334810 [TBL] [Abstract][Full Text] [Related]
17. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation. Müller EH; Scheichl R; Shardlow T Proc Math Phys Eng Sci; 2015 Apr; 471(2176):20140679. PubMed ID: 27547075 [TBL] [Abstract][Full Text] [Related]
18. A cutoff phenomenon in accelerated stochastic simulations of chemical kinetics via flow averaging (FLAVOR-SSA). Bayati B; Owhadi H; Koumoutsakos P J Chem Phys; 2010 Dec; 133(24):244117. PubMed ID: 21197986 [TBL] [Abstract][Full Text] [Related]
19. Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics. Marquez-Lago TT; Burrage K J Chem Phys; 2007 Sep; 127(10):104101. PubMed ID: 17867731 [TBL] [Abstract][Full Text] [Related]