These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18190200)

  • 61. Extending the excitation sculpting concept for selective excitation.
    Roumestand C; Canet D
    J Magn Reson; 2000 Dec; 147(2):331-9. PubMed ID: 11097822
    [TBL] [Abstract][Full Text] [Related]  

  • 62. In vitro characterization of Synechocystis CYP120A1 revealed the first nonanimal retinoic acid hydroxylase.
    Alder A; Bigler P; Werck-Reichhart D; Al-Babili S
    FEBS J; 2009 Oct; 276(19):5416-31. PubMed ID: 19703230
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evidence that D1-His332 in photosystem II from Thermosynechococcus elongatus interacts with the S3-state and not with the S2-state.
    Sugiura M; Rappaport F; Hillier W; Dorlet P; Ohno Y; Hayashi H; Boussac A
    Biochemistry; 2009 Aug; 48(33):7856-66. PubMed ID: 19624137
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Solid-state (17)O NMR as a sensitive probe of keto and gem-diol forms of alpha-keto acid derivatives.
    Zhu J; Geris AJ; Wu G
    Phys Chem Chem Phys; 2009 Aug; 11(32):6972-80. PubMed ID: 19652831
    [TBL] [Abstract][Full Text] [Related]  

  • 65. R(1rho) relaxation for two-site chemical exchange: general approximations and some exact solutions.
    Miloushev VZ; Palmer AG
    J Magn Reson; 2005 Dec; 177(2):221-7. PubMed ID: 16143548
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Detection of chemical exchange in methyl groups of macromolecules.
    Gill ML; Hsu A; Palmer AG
    J Biomol NMR; 2019 Sep; 73(8-9):443-450. PubMed ID: 31407203
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural Insights into Bound Water in Crystalline Amino Acids: Experimental and Theoretical (17)O NMR.
    Michaelis VK; Keeler EG; Ong TC; Craigen KN; Penzel S; Wren JE; Kroeker S; Griffin RG
    J Phys Chem B; 2015 Jun; 119(25):8024-36. PubMed ID: 25996165
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Calculation of the deuteron quadrupole relaxation rate in a mixture of water and dimethyl sulfoxide.
    Müller MG; Hardy EH; Vogt PS; Bratschi C; Kirchner B; Huber H; Searles DJ
    J Am Chem Soc; 2004 Apr; 126(14):4704-10. PubMed ID: 15070389
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Analytical solution for the depolarization of hyperpolarized nuclei by chemical exchange saturation transfer between free and encapsulated xenon (HyperCEST).
    Zaiss M; Schnurr M; Bachert P
    J Chem Phys; 2012 Apr; 136(14):144106. PubMed ID: 22502500
    [TBL] [Abstract][Full Text] [Related]  

  • 70. NMR and the water-holding issue of pork.
    Bertram HC; Andersen HJ
    J Anim Breed Genet; 2007 Nov; 124 Suppl 1():35-42. PubMed ID: 17988249
    [TBL] [Abstract][Full Text] [Related]  

  • 71. NMR triple-quantum filtered relaxation analysis of 17O-water in insulin solutions: an insight into the aggregation of insulin and the properties of its bound water.
    Torres AM; Grieve SM; Kuchel PW
    Biophys Chem; 1998 Mar; 70(3):231-9. PubMed ID: 9546200
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Correlational analysis of proteins and nonmetallic nanoparticles in a deep-nulling microscope.
    Hilbert M; Hippchen H; Wehling A; Walla PJ
    J Phys Chem B; 2005 Sep; 109(38):18162-70. PubMed ID: 16853332
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The oxidation potential of adenosine and adenosine-thymidine base pair in chloroform solution.
    Caruso T; Capobianco A; Peluso A
    J Am Chem Soc; 2007 Dec; 129(49):15347-53. PubMed ID: 17990886
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Decoherence and quantum interference in a four-site model system: mechanisms and turnovers.
    Zarea M; Powell D; Renaud N; Wasielewski MR; Ratner MA
    J Phys Chem B; 2013 Jan; 117(4):1010-20. PubMed ID: 23286386
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Strong and weak binding of water to proteins studied by NMR triple-quantum filtered relaxation spectroscopy of (17)O-water.
    Torres AM; Grieve SM; Chapman BE; Kuchel PW
    Biophys Chem; 1997 Sep; 67(1-3):187-98. PubMed ID: 17029897
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Determination of the Bound Water Fraction in Cells and Protein Solutions Using 17O-Water Multiple-Quantum Filtered Relaxation Analysis.
    Baguet E; Chapman BE; Torres AM; Kuchel PW
    J Magn Reson B; 1996 Apr; 111(1):1-8. PubMed ID: 8661257
    [TBL] [Abstract][Full Text] [Related]  

  • 77. NMR study of -17-O from H2-17-O in human erythrocytes.
    Shporer M; Civan MM
    Biochim Biophys Acta; 1975 Mar; 385(1):81-7. PubMed ID: 1125262
    [TBL] [Abstract][Full Text] [Related]  

  • 78. TD-1HNMR measurements show enantioselective dissociation of ribose and glucose in the presence of H2(17)O.
    Scorei RI; Cimpoiaşu VM; Popa R
    Astrobiology; 2007 Oct; 7(5):733-44. PubMed ID: 17963473
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rapid, Quantitative Nuclear Magnetic Resonance Test for Oxygen-17 Enrichment in Water.
    Peterson JW; Burt SR; Yuan Y; Harper JK
    Anal Chem; 2022 Apr; 94(15):5741-5743. PubMed ID: 35377605
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High-Resolution
    Keeler EG; Michaelis VK; Wilson CB; Hung I; Wang X; Gan Z; Griffin RG
    J Phys Chem B; 2019 Apr; 123(14):3061-3067. PubMed ID: 30882222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.