These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18190219)

  • 1. Selection principle for various modes of spatially nonuniform electrochemical oscillations.
    Fukushima S; Nakanishi S; Nakato Y; Ogawa T
    J Chem Phys; 2008 Jan; 128(1):014714. PubMed ID: 18190219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hierarchy of global coupling induced cluster patterns during the oscillatory H2-electrooxidation reaction on a Pt ring-electrode.
    Varela H; Beta C; Bonnefont A; Krischer K
    Phys Chem Chem Phys; 2005 Jun; 7(12):2429-39. PubMed ID: 15962026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection.
    Oprea I; Triandaf I; Dangelmayr G; Schwartz IB
    Chaos; 2007 Jun; 17(2):023101. PubMed ID: 17614655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation on Pt(110).
    Kim M; Bertram M; Pollmann M; von Oertzen A; Mikhailov AS; Rotermund HH; Ertl G
    Science; 2001 May; 292(5520):1357-60. PubMed ID: 11359007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: a mathematical modeling and simulation.
    Mukouyama Y; Kikuchi M; Samjeské G; Osawa M; Okamoto H
    J Phys Chem B; 2006 Jun; 110(24):11912-7. PubMed ID: 16800494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stationary spatial patterns during bulk CO electrooxidation on platinum.
    Bonnefont A; Varela H; Krischer K
    J Phys Chem B; 2005 Mar; 109(8):3408-15. PubMed ID: 16851372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical degradation of chlorobenzene on boron-doped diamond and platinum electrodes.
    Liu L; Zhao G; Wu M; Lei Y; Geng R
    J Hazard Mater; 2009 Aug; 168(1):179-86. PubMed ID: 19264395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Front waves in the NO + NH3 reaction on Pt{100}.
    Irurzun IM; Mola EE; Imbihl R
    J Phys Chem A; 2007 May; 111(17):3313-20. PubMed ID: 17417826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies of adsorbed CO electrochemical oxidation on Pt(335) at full and sub-saturation coverages.
    Inkaew P; Korzeniewski C
    Phys Chem Chem Phys; 2008 Jul; 10(25):3655-61. PubMed ID: 18563226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of transient current density distributions for multi-ion electrolytes at a rotating disk electrode.
    Floridor G; Van den Bossche B; Nelissen G; Bortels L; Deconinck J
    Anal Chem; 2004 Sep; 76(18):5579-90. PubMed ID: 15362924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of spatiotemporal patterns during the electrodissolution of metals: Experiments and simulations.
    Jaeger NI; Otterstedt RD; Birzu A; Green BJ; Hudson JL
    Chaos; 2002 Mar; 12(1):231-239. PubMed ID: 12779550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2.
    Chakraborty S; Raj CR
    Biosens Bioelectron; 2009 Jul; 24(11):3264-8. PubMed ID: 19442506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF.
    Lai W; Haile SM
    Phys Chem Chem Phys; 2008 Feb; 10(6):865-83. PubMed ID: 18231690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional electrochemical turbulence during the electrodissolution of metal disk electrodes: Model calculations.
    Bîrzu A; Krischer K
    Phys Chem Chem Phys; 2006 Aug; 8(31):3659-68. PubMed ID: 16883395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic current density of the disk electrode double-layer.
    Behrend MR; Ahuja AK; Weiland JD
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1056-62. PubMed ID: 18334397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel electrochemical immunosensor based on hydrogen evolution inhibition by enzymatic copper deposition on platinum nanoparticle-modified electrode.
    Huang Y; Wen Q; Jiang JH; Shen GL; Yu RQ
    Biosens Bioelectron; 2008 Dec; 24(4):600-5. PubMed ID: 18640025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the oxidation-reduction potential of cheddar cheese.
    Topcu A; McKinnon I; McSweeney PL
    J Food Sci; 2008 Apr; 73(3):C198-203. PubMed ID: 18387099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical determination of cadmium(II) at platinum electrode modified with kaolin by square wave voltammetry.
    Mhammedi MA; Achak M; Hbid M; Bakasse M; Hbid T; Chtaini A
    J Hazard Mater; 2009 Oct; 170(2-3):590-4. PubMed ID: 19560266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially distributed current oscillations with electrochemical reactions in microfluidic flow cells.
    Bîrzu A; Jia Y; Sankuratri V; Liu Y; Kiss IZ
    Chemphyschem; 2015 Feb; 16(3):555-66. PubMed ID: 25598243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study on the effects of internal noise for rate oscillations during CO oxidation on platinum(110) surfaces.
    Juan M; Hou Z; Xin H
    J Phys Chem A; 2007 Nov; 111(45):11500-5. PubMed ID: 17944443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.