BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 1819040)

  • 41. Naphthalene degradation by Pseudomonas sp. HOB1: in vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms.
    Pathak H; Kantharia D; Malpani A; Madamwar D
    J Hazard Mater; 2009 Jul; 166(2-3):1466-73. PubMed ID: 19167154
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Nah-plasmids of IncP-9 group from natural strains of Pseudomonas].
    Levchuk AA; Bulyga IM; Izmalkova TIu; Sevast'ianovich IaR; Kosheleva IA; Thomas CM; Titok MA
    Mol Biol (Mosk); 2006; 40(5):835-43. PubMed ID: 17086984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cometabolic Degradation of Dibenzofuran and Dibenzothiophene by a Naphthalene-Degrading Comamonas sp. JB.
    Ji X; Xu J; Ning S; Li N; Tan L; Shi S
    Curr Microbiol; 2017 Dec; 74(12):1411-1416. PubMed ID: 28821932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida.
    Dunn NW; Gunsalus IC
    J Bacteriol; 1973 Jun; 114(3):974-9. PubMed ID: 4712575
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Bacteria--degraders of polycyclic aromatic hydrocarbons, isolated from soil and bottom sediments in salt-mining areas].
    Plotnikova EG; Altyntseva OV; Kosheleva IA; Puntus IF; Filonov AE; Gavrish EIu; Demakov VA; Boronin AM
    Mikrobiologiia; 2001; 70(1):61-9. PubMed ID: 11338839
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Alternative route of catabolism of naphthalene by Pseudomonas fluorescens].
    Skriabin GK; Starovoĭtov II
    Dokl Akad Nauk SSSR; 1975; 221(2):493-5. PubMed ID: 804395
    [No Abstract]   [Full Text] [Related]  

  • 47. Regiospecific oxidation of naphthalene and fluorene by toluene monooxygenases and engineered toluene 4-monooxygenases of Pseudomonas mendocina KR1.
    Tao Y; Bentley WE; Wood TK
    Biotechnol Bioeng; 2005 Apr; 90(1):85-94. PubMed ID: 15723332
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recruitment of naphthalene dissimilatory enzymes for the oxidation of 1,4-dichloronaphthalene to 3,6-dichlorosalicylate, a precursor for the herbicide dicamba.
    Durham DR; Stewart DB
    J Bacteriol; 1987 Jun; 169(6):2889-92. PubMed ID: 3584076
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species.
    Monticello DJ; Bakker D; Finnerty WR
    Appl Environ Microbiol; 1985 Apr; 49(4):756-60. PubMed ID: 4004209
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial oxidation of dimethylnaphthalene isomers.
    Miyachi N; Tanaka T; Suzuki T; Hotta Y; Omori T
    Appl Environ Microbiol; 1993 May; 59(5):1504-6. PubMed ID: 8517744
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transformation of 3-chlorodibenzofuran by Pseudomonas sp. HH69.
    Harms H; Wilkes H; Sinnwell V; Wittich RM; Figge K; Francke W; Fortnagel P
    FEMS Microbiol Lett; 1991 Jun; 65(1):25-9. PubMed ID: 1874399
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Naphthalene metabolism by pseudomonads: the oxidation of 1,2-dihydroxynaphthalene to 2-hydroxychromene-2-carboxylic acid and the formation of 2'-hydroxybenzalpyruvate.
    Barnsley EA
    Biochem Biophys Res Commun; 1976 Oct; 72(3):1116-21. PubMed ID: 985513
    [No Abstract]   [Full Text] [Related]  

  • 53. Microbial oxidation of naphthalene. I. Factors concerning salicylate accumulation.
    KLAUSMEIER RE; STRAWINSKI RJ
    J Bacteriol; 1957 Apr; 73(4):461-4. PubMed ID: 13428675
    [No Abstract]   [Full Text] [Related]  

  • 54. The bacterial dissimilation of naphthalene.
    MURPHY JF; STONE RW
    Can J Microbiol; 1955 Aug; 1(7):579-88. PubMed ID: 13250451
    [No Abstract]   [Full Text] [Related]  

  • 55. Cleavage of dibenzofuran and dibenzodioxin ring systems by a Pseudomonas bacterium.
    Fortnagel P; Harms H; Wittich RM; Francke W; Krohn S; Meyer H
    Naturwissenschaften; 1989 May; 76(5):222-3. PubMed ID: 2747801
    [No Abstract]   [Full Text] [Related]  

  • 56. Construction of haloaromatics utilising bacteria.
    Reineke W; Knackmuss HJ
    Nature; 1979 Feb; 277(5695):385-6. PubMed ID: 551259
    [No Abstract]   [Full Text] [Related]  

  • 57. Comparison of the efficiency of various methods for the synthesis of models of metabolites: example of 4a-methylhexahydronaphtalenones.
    Estour F; Ménager S; Akagah B; Lafont O
    Eur J Med Chem; 2003; 38(11-12):925-8. PubMed ID: 14642324
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The oxidative degradation of glycine by a Pseudomonas.
    CAMPBELL LL
    J Biol Chem; 1955 Dec; 217(2):669-73. PubMed ID: 13271428
    [No Abstract]   [Full Text] [Related]  

  • 59. Biological oxidation of naphthalene.
    STRAWINSKI RJ; STONE RW
    Can J Microbiol; 1954 Dec; 1(3):206-10. PubMed ID: 14352058
    [No Abstract]   [Full Text] [Related]  

  • 60. On the mechanism of oxidation of trans-decahydronaphthalene at 100 degrees C.
    McARTHUR DS; SMITH EA
    Can J Res; 1949 Feb; 27(2):43-60. PubMed ID: 18117696
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.