These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18190519)

  • 21. [Animal models for familial Parkinson's disease].
    Takahashi R
    Rinsho Shinkeigaku; 2007 Nov; 47(11):938-40. PubMed ID: 18210841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin.
    Sriram SR; Li X; Ko HS; Chung KK; Wong E; Lim KL; Dawson VL; Dawson TM
    Hum Mol Genet; 2005 Sep; 14(17):2571-86. PubMed ID: 16049031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress.
    Moore DJ; Zhang L; Troncoso J; Lee MK; Hattori N; Mizuno Y; Dawson TM; Dawson VL
    Hum Mol Genet; 2005 Jan; 14(1):71-84. PubMed ID: 15525661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How do Parkin mutations result in neurodegeneration?
    Imai Y; Takahashi R
    Curr Opin Neurobiol; 2004 Jun; 14(3):384-9. PubMed ID: 15194120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parkin is linked to the ubiquitin pathway.
    Tanaka K; Suzuki T; Chiba T; Shimura H; Hattori N; Mizuno Y
    J Mol Med (Berl); 2001 Sep; 79(9):482-94. PubMed ID: 11692161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-motor behavioural impairments in parkin-deficient mice.
    Zhu XR; Maskri L; Herold C; Bader V; Stichel CC; Güntürkün O; Lübbert H
    Eur J Neurosci; 2007 Oct; 26(7):1902-11. PubMed ID: 17883413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dimerization of Parkinson's disease-causing DJ-1 and formation of high molecular weight complexes in human brain.
    Baulac S; LaVoie MJ; Strahle J; Schlossmacher MG; Xia W
    Mol Cell Neurosci; 2004 Nov; 27(3):236-46. PubMed ID: 15519239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function.
    Chung KK; Thomas B; Li X; Pletnikova O; Troncoso JC; Marsh L; Dawson VL; Dawson TM
    Science; 2004 May; 304(5675):1328-31. PubMed ID: 15105460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson's disease.
    Vercammen L; Van der Perren A; Vaudano E; Gijsbers R; Debyser Z; Van den Haute C; Baekelandt V
    Mol Ther; 2006 Nov; 14(5):716-23. PubMed ID: 16914382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential expression and tissue distribution of parkin isoforms during mouse development.
    Huynh DP; Dy M; Nguyen D; Kiehl TR; Pulst SM
    Brain Res Dev Brain Res; 2001 Oct; 130(2):173-81. PubMed ID: 11675120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tom70 is essential for PINK1 import into mitochondria.
    Kato H; Lu Q; Rapaport D; Kozjak-Pavlovic V
    PLoS One; 2013; 8(3):e58435. PubMed ID: 23472196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1).
    Mills RD; Sim CH; Mok SS; Mulhern TD; Culvenor JG; Cheng HC
    J Neurochem; 2008 Apr; 105(1):18-33. PubMed ID: 18221368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy.
    Xian H; Liou YC
    Autophagy; 2019 Dec; 15(12):2107-2125. PubMed ID: 30894073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects.
    Callegari S; Oeljeklaus S; Warscheid B; Dennerlein S; Thumm M; Rehling P; Dudek J
    Autophagy; 2017 Jan; 13(1):201-211. PubMed ID: 27846363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of α-Synuclein Multimer Stoichiometry in Complex Biological Samples by Electrophoresis.
    Killinger BA; Moszczynska A
    Anal Chem; 2016 Apr; 88(7):4071-84. PubMed ID: 26937787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CHIP Is an Essential Determinant of Neuronal Mitochondrial Stress Signaling.
    Palubinsky AM; Stankowski JN; Kale AC; Codreanu SG; Singer RJ; Liebler DC; Stanwood GD; McLaughlin B
    Antioxid Redox Signal; 2015 Aug; 23(6):535-49. PubMed ID: 25602369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of the human Parkin ligase domain in an autoinhibited state.
    Wauer T; Komander D
    EMBO J; 2013 Jul; 32(15):2099-112. PubMed ID: 23727886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of Parkin E3 ubiquitin ligase activity.
    Walden H; Martinez-Torres RJ
    Cell Mol Life Sci; 2012 Sep; 69(18):3053-67. PubMed ID: 22527713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Small, N-terminal tags activate Parkin E3 ubiquitin ligase activity by disrupting its autoinhibited conformation.
    Burchell L; Chaugule VK; Walden H
    PLoS One; 2012; 7(4):e34748. PubMed ID: 22496854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parkin interacts with Ambra1 to induce mitophagy.
    Van Humbeeck C; Cornelissen T; Hofkens H; Mandemakers W; Gevaert K; De Strooper B; Vandenberghe W
    J Neurosci; 2011 Jul; 31(28):10249-61. PubMed ID: 21753002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.