These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 18191266)
1. Bioprotection of Golden Delicious apples and Iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. Trias R; Bañeras L; Badosa E; Montesinos E Int J Food Microbiol; 2008 Mar; 123(1-2):50-60. PubMed ID: 18191266 [TBL] [Abstract][Full Text] [Related]
2. Biopreservative methods to control the growth of foodborne pathogens on fresh-cut lettuce. Oliveira M; Abadias M; Colás-Medà P; Usall J; Viñas I Int J Food Microbiol; 2015 Dec; 214():4-11. PubMed ID: 26210531 [TBL] [Abstract][Full Text] [Related]
3. Lactic acid bacteria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb's lettuce. Siroli L; Patrignani F; Serrazanetti DI; Tabanelli G; Montanari C; Gardini F; Lanciotti R Food Microbiol; 2015 May; 47():74-84. PubMed ID: 25583340 [TBL] [Abstract][Full Text] [Related]
4. Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce. Allende A; Martínez B; Selma V; Gil MI; Suárez JE; Rodríguez A Food Microbiol; 2007; 24(7-8):759-66. PubMed ID: 17613374 [TBL] [Abstract][Full Text] [Related]
5. Use of organic acids to inactivate Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. Park SH; Choi MR; Park JW; Park KH; Chung MS; Ryu S; Kang DH J Food Sci; 2011 Aug; 76(6):M293-8. PubMed ID: 21623781 [TBL] [Abstract][Full Text] [Related]
6. Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. Trias R; Badosa E; Montesinos E; Bañeras L Int J Food Microbiol; 2008 Sep; 127(1-2):91-8. PubMed ID: 18625532 [TBL] [Abstract][Full Text] [Related]
7. Survival and growth of foodborne pathogens in minimally processed vegetables at 4 and 15 °C. Tian JQ; Bae YM; Choi NY; Kang DH; Heu S; Lee SY J Food Sci; 2012 Jan; 77(1):M48-50. PubMed ID: 22260117 [TBL] [Abstract][Full Text] [Related]
8. Microbiological quality and safety of raw milk and soft cheese and detection of autochthonous lactic acid bacteria with antagonistic activity against Listeria monocytogenes, Salmonella Spp., and Staphylococcus aureus. Ortolani MB; Yamazi AK; Moraes PM; Viçosa GN; Nero LA Foodborne Pathog Dis; 2010 Feb; 7(2):175-80. PubMed ID: 19839761 [TBL] [Abstract][Full Text] [Related]
9. Bactericidal and synergistic effects of X-ray irradiation and gallic acid against foodborne pathogens on lettuce. Jeon MJ; Ha JW Food Microbiol; 2020 Dec; 92():103584. PubMed ID: 32950168 [TBL] [Abstract][Full Text] [Related]
10. Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. Critzer FJ; Kelly-Wintenberg K; South SL; Golden DA J Food Prot; 2007 Oct; 70(10):2290-6. PubMed ID: 17969610 [TBL] [Abstract][Full Text] [Related]
11. Analysis of native microflora and selection of strains antagonistic to human pathogens on fresh produce. Liao CH; Fett WF J Food Prot; 2001 Aug; 64(8):1110-5. PubMed ID: 11510644 [TBL] [Abstract][Full Text] [Related]
12. Subtractive screening for probiotic properties of lactobacillus species from the human gastrointestinal tract in the search for new probiotics. Delgado S; O'Sullivan E; Fitzgerald G; Mayo B J Food Sci; 2007 Oct; 72(8):M310-5. PubMed ID: 17995611 [TBL] [Abstract][Full Text] [Related]
13. Isolation, identification, and selection of lactic acid bacteria from alfalfa sprouts for competitive inhibition of foodborne pathogens. Wilderdyke MR; Smith DA; Brashears MM J Food Prot; 2004 May; 67(5):947-51. PubMed ID: 15151232 [TBL] [Abstract][Full Text] [Related]
14. Application of antimicrobial-producing lactic acid bacteria to control pathogens in ready-to-use vegetables. Vescovo M; Torriani S; Orsi C; Macchiarolo F; Scolari G J Appl Bacteriol; 1996 Aug; 81(2):113-9. PubMed ID: 8760320 [TBL] [Abstract][Full Text] [Related]
15. Antagonistic effect of Pseudomonas graminis CPA-7 against foodborne pathogens in fresh-cut apples under simulated commercial conditions. Alegre I; Viñas I; Usall J; Anguera M; Altisent R; Abadias M Food Microbiol; 2013 Apr; 33(2):139-48. PubMed ID: 23200645 [TBL] [Abstract][Full Text] [Related]
16. Efficacy of Peracetic Acid in Inactivating Foodborne Pathogens on Fresh Produce Surface. Singh P; Hung YC; Qi H J Food Sci; 2018 Feb; 83(2):432-439. PubMed ID: 29369360 [TBL] [Abstract][Full Text] [Related]
17. Pre-harvest biocontrol of Listeria and Escherichia coli O157 on lettuce and spinach by lactic acid bacteria. Yin HB; Chen CH; Gu G; Nou X; Patel J Int J Food Microbiol; 2023 Feb; 387():110051. PubMed ID: 36516726 [TBL] [Abstract][Full Text] [Related]
18. Isolation of lactic acid bacteria from pao cai, a Chinese traditional fermented vegetable, with inhibitory activity against Salmonella associated with fresh-cut apple, using a modelling study. Luo W; Chen M; Chen A; Dong W; Hou X; Pu B J Appl Microbiol; 2015 Apr; 118(4):998-1006. PubMed ID: 25785432 [TBL] [Abstract][Full Text] [Related]
19. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Bhargava K; Conti DS; da Rocha SR; Zhang Y Food Microbiol; 2015 May; 47():69-73. PubMed ID: 25583339 [TBL] [Abstract][Full Text] [Related]
20. Antibacterial Activity of Caffeic Acid Combined with UV-A Light against Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes. Park MY; Kang DH Appl Environ Microbiol; 2021 Jul; 87(15):e0063121. PubMed ID: 33990307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]